
SIK2005 Strømning og transportprosesser 
 
Kompressibel strømning 
 
Rørstrømning 
 
Både i forbindelse med vår naturgassproduksjon på kontinentalsokkelen og i miljøsammenheng er 
strømningsberegninger på gass av stor betydning. Det er derfor ønskelig å utvide emnet noe i 
forhold til det som er angitt i Geankoplis.  
 
Basis for kompressibel strømning er som for det inkompressible tilfellet, bevegelsesligningene, eller 
for endimensjonal strømning, energiligningen. Antas det turbulent strømning med α = 1, kan denne 
på differensiell form skrives 

 
La oss nå konsentrere oss om rørstrømning hvor arbeid ikke utføres og hvor høydedifferanser blir 
av underordnet betydning. Dette siste er ofte tilfelle for gasstrømning på grunn av lav tetthet. Altså 
med g dz = 0, dWs = 0 og med  

 
får vi: 

 
Denne ligningen kan ikke integreres direkte da både v og P vil variere med L. Imidlertid kan vi 
introdusere massestrømmen pr. m2 rørtverrsnitt G. Denne vil være konstant så lenge tversnittet er 
konstant. 

 
Både ? og v endres nedover et rør, men produktet er konstant. (Husk ? = 1/V). 
Innsatt og med deling på V2 gir dette: 

 
Nå har vi fått fjernet den variable koeffisienten foran dL og det eneste som står igjen er å finne en 
relasjon mellom P og V. (I parantes: f er også konstant da Re = GD/µ = konst.) 
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Integrerer mellom posisjonene 1 og 2 

 
Integral-leddet vil variere etter hva slags tilstandsendring man har. 
 
 
Isoterm strøm av ideell gass 

 
innsatt og integrert  

 
Og da pV = konstant, siden T er konstant: 

 
Eksempel 
 
Pumping av gass i rørledning på havbunnen er ofte tilnærmet isoterm idet varmetapet til sjøvannet 
gjør at gassen snart stiller seg inn på sjøvannets temperatur. 
 
Beregn trykkfallet i en rørledning på 10 km, med ID = 0.6 m som frakter 50 m3/s av metan (regnet 
ved 288 K og 100 kPa). Transporten antas isoterm ved 6°C og starttrykket er 3000 kPa. Anta 
ideell gass. MCH4 = 16 og µ = 0,011 ⋅ 10-3 kg/m ⋅ s, e/D = 0.001. 
 
Massestrøm av metan 
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Ved e/D = 0.001 er f = 0.005 

 
 
Får da: 

 
I utgangspunktet fordrer dette prøve/feile løsning, eventuelt løsning i feks Matlab. Som vi har vært 
inne på for inkompressibel strømning så kan ofte det kinetiske leddet neglisjeres (G2 ln(P1/P2) ≈  0). 
Dette kan også være tilfelle for gass-strømning om ikke hastighetene er for høye. 
 
 
Får da: 

 
Må så se om vår antakelse om neglisjerbar kinetisk energi stemmer: 
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Faktisk er trykktapet så lite at en inkompressibel beregning ville ha vært tilstrekkelig. (Bruk da 
midlere tetthet.) 
 
 
Kritisk trykkfall.  
Når trykkfallet i et rørstrekk eller over en innsnevring blir høyt, kan gassens hastighet nå 
lydhastigheten(sonisk hastighet). Vi snakker da om kritisk eller strupet strømning. 
Isotermt. 

La oss se hva som skjer med strømningsraten G når trykkfallet øker, dvs når P2 minker. Når P1 = P2 
 blir G = 0. Dette er innlysende og trivielt. Imidlertid er grenseverdien for G når P2 → 0  også 0 (løs 
ligningen mhp. G2 og bruk L'Hospitals regel). 
 

s  m/kg 10  2.28 = 
0.6

10000
  )(118.2  0.0 = 

D
L

  G  f 242622 ⋅⋅⋅⋅
∆

⋅⋅ 12  

( ) 10  2.28 = P - P 
2RT
M

 + 
P
P

G 62
1

2
2

2

12 ⋅−







ln  

( )10  2.28  
M

2RT
 = P - P 62

1 ⋅−⋅2
2  

( ) kPa 2887 = 16) /10 2.28  279  8314  (2 - 10  3 = P 66 2
2 ⋅⋅⋅⋅⋅  

( ) 0 = 
D
L

 G   + P - P 
2RT
M

 + 
P
P   G 22

1
2
2

2

12 ∆
⋅⋅⋅

2
ln

λ
 



 
→ Siden vi ved alle andre P2 har en G som ikke er 0 så må et maksimum eksistere mellom P2 

= P1 og P2 = 0. 
 
Deler ligningen på G2 og deriverer mhp. P2. Legg merke til at friksjonsleddet faller bort. Altså er 
det trykkfallet som bestemmer om man får kritisk strømning, og den maksimale strømningen er 
uavhengige av friksjonen i ledningen: 

 
Maksimum finnes for dG/dP2 = 0 (merkede verdier for maksimum) 

 
Her er P2

’ det trykket som gir maksimal strømning G’. Nå er 
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og hastigheten blir: 

 
Dette er den maksimale strømningshastigheten som kan oppnås ved isoterm drift. Den kalles ofte 
"isoterm lydhastighet" selv om den ikke eksakt er lik lydhastigheten under de gitte forhold. Trykket 
P2' kan finnes ved å sette inn for G (G’2 = P2 '/V2') i energiligningen øverst og løse for P2'. 

 
 
 
Hvis P2 < P2' kalles trykkfallet overkritisk og strømningshastigheten gis av hastigheten v2' uansett 
verdien på P2. 
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Isentropisk strømning 
 
Isentropisk strømning vil si adiabatisk friksjonsfri strømning. Man kan tro at dette er et skjeldent 
forekommende tilfelle, men ofte er friksjonen i gass-strømmer relativt liten og man kan starte med 
en isentropisk tilnærming og deretter innføre korreksjonsfaktorer; noe vi skal se på senere. 
 
I det ideelle tilfellet at strømningen er adiabatisk og reversibel har vi: 

 
Her er γ = Cp/Cv. Integrerer vi dP/V får vi: 

 
samtidig som 

 
Innsatt i energiligningen gir dette: 

 
Skal isentropisk strømning realiseres må friksjonsleddet være lik 0. 
 
 På samme måte som for isoterm strømning kan dette vises å gi en maksimal hastighet 
 

 
Her er P2 og V2 henholdsvis det trykk og det spesifikke volum som gir kritisk(sonisk ) hastighet, og 
derved maksimal massestrøm.  Denne hastigheten tilsvarer lydhastigheten under de gitte forhold 
(P2, V2). Vi har altså sonisk strømning. 
 
 
Adiabatisk strømning 
 
For adiabatisk strømning hvor vi også har friksjon kan man få et tilnærmet riktig svar ved å bruke 
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ligningene for isentropisk strømning med ? som angitt, og så inkludere friksjonsleddet. Man bør 
ellers bruke P ⋅ Vk = konst. hvor 1 < k < ?, som kalles polytropisk endring. Imidlertid er k normalt 
ikke kjent. En alternativ måte å løse problemet på er gitt i Coulson & Richardson, vol 1, men tas 
ikke med her. 
 
Lydhastigheten 
 
Lydhastigheten er forplantningshastigheten til en trykkfront av infinitesimal styrke. Dette vil si at 
endringen over trykkfronten er tilnærmet reversibel. 

 
Alle gassens egenskaper vil endre seg over denne trykkfronten 
 
  T + dT     T 
  v + dv = dv    v = 0 
  V + dV    V 
  P + dP     P 
 
 
La oss tenke oss et lite kontrollvolum lagt rundt denne fronten og at vårt aksesystem beveger seg 
med frontens hastighet. La nå samtidig fronten bevege seg inn i et stillestående fluid. Da blir bildet: 
 
  T + dT     T 
  v = c – dv    v = c 
  V + dV    V 
  P + dP     P 
 
Våre balanseligninger må gjelde 
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Eliminerer dv mellom impuls og massebalanse: 
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Nå er forplantningshastigheten av en trykkbølge relatert til et fluids elastisitetsmodul 
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Settes ? = 1/V og benyttes dP/dV = (d?/dV) (dP/d?) fås: 
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c er altså her lydhastigheten. 
 
Denne utledningen gjelder bare for infinitesimale dP, altså for isentropiske forhold slik at den 
korrekte ligning blir: 
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For normale trykkfronter vil vi alltid ha irreversibiliteter slik at ? S ≠ 0 over fronten. 
 
 
 
 
 
 
Strømning i varierende tverrsnitt 
 
Vi skal nå se på hvordan et kompressibelt medium oppfører seg i rør med varierende tverrsnitt, 
f.eks. dyser. Bruker da kontinuitetsligningen generelt eller vi kan derivere den: 

konst. = A v  ⋅⋅ρ  
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og bruker denne sammen med energiligningen for isentropisk strømning 
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eliminerer dP og d? fra (8), (9) og (10) og innfører Ma = machtallet = v/c 
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Dette er en ligning som viser hvordan hastigheten endrer seg i et rør når tverrsnittet forandres. Når 
Ma<1, dvs for underlydshastigheter(subsoniske forhold), vil nevneren på høyre side være negativ 
og gasshastigheten vil øke med minkende tverrsnitt. Dette er intuitivt riktig. Er imidlertid Ma>1 så 
vil nevneren på høyre side bli positiv og vi ser da at hastigheten øker når tverrsnittet øker.  
 

Ma < 1 → synkende A gir økende v 
Ma > 1 → økende A gir økende v 

 
Og for i det hele tatt å oppnå supersoniske hastigheter, overlydshastigheter, så må vi ha kritisk 
strømning et eller annet sted. Fra dette punktet må tverrsnittet ekspandere. 
 
Ser på isentropisk strømning i dysen gitt i figuren. 

 
 
Setter opp energiligningen (10), og integrerer mellom snitt 1 og 2. Tar ikke med friksjonsleddet til å 
begynne med. Dyser er i utgangspunktet utformet for å ha minimal friksjon og vi justerer for 
friksjon til slutt med en konstant. 

 
Antas nå at v1

2 << v2
2 og integreres VdP  under isentropiske forhold, fås 
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og nødvendig tverrsnitt A2 kan finnes fra kontinuitetsligningen 

 
Hvis trykket P3 er lavt nok, vil P2 innta en minimumsverdi som korresponderer med sonisk 
strømning i trangeste tverrsnitt. 
 
For en gitt G' vil det til ethvert trykkforhold, P2/P1 svare et nødvendig trangeste tverrsnitt. 
Hva skjer nå med A2 når trykkforholdet synker? 

 
Deriverer A2

2 mhp. trykkforholdet w = P2/P1  og setter dA2
2/dw = 0.  

Finner da et ekstremalpunkt i 

Dette er et minimum og A2 går altså gjennom et minimum når w synker. Dette tilsvarer å finne 
maksimum G' når A2 er gitt og w synker. Trykkforholdet som gir denne maksimale strømning 
kalles det kritiske trykkforholdet, wc. Maksimal strømning finnes ved tilbakesubstitusjon i ligning 

(14) og den tilsvarende hastighet v2c blir 
som vi har sett tidligere er dette lydhastigheten. 
 
Altså har gjennomstrømningen G' et maksimum også for dyser, svarende til sonisk hastighet i 
trangeste tverrsnitt. Hastigheten vil derimot kunne stige videre inn i det supersoniske området som 
vi har sett. Ekspansjonen videre i en divergerende del av dysen er også tilnærmet isentropisk. 
 
Isentropisk ekspansjon gjennom en dyse med både konvergerende og divergerende del kan da 
beskrives som: 
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Fra Coulson & Richardson; Chemical Eng., Vol. 1. 
Hva skjer nå om nedstrømstrykket PB ligger mellom PE2 og PE3? Da er PB for høyt til å kunne gi en 
fullstendig isentropisk ekspansjon i den supersoniske delen og et trykksprang vil oppstå. Et slikt 
trykksprang kalles et sjokk eller en sjokkbølge. 



 
Denne sjokkbølgen har en hastighet lik gasshastigheten i posisjon z, men motsatt rettet. Fronten vil 
altså stå i ro i forhold til dysen. Både på opp- og nedstrøms-siden av sjokkbølgen kan man regne 
isentropisk tilstandsendring. Over sjokket er det irreversibiliteter slik at  
 

.. oppstrnedstr  S> S  

 
Trykkendringen vil også føre en overgang fra supersonisk til subsonisk strømning. 
En annen mulighet er at strømmen i den divergerende delen beholder sin supersoniske karakter, 
men "løsner" fra veggene. Den blir da til et jetstrøm. 
 


