SIK 2005 Strgmning og transpor tpr osesser

Kompressibel strgmning

Rarstremning

Badei forbindel se med var naturgassproduksjon pa kontinental sokkelen og i miljgsammenheng er
strgmningsberegninger pa gass av stor betydning. Det er derfor gnskelig a utvide emnet noe i
forhold til det som er angitt i Geankoplis.

Basisfor kompressibel stramning er som for det inkompressibletilfellet, bevegelsedigningene, eller
for endimengonal stramning, energiligningen. Antasdet turbulent stramning meda =1, kandenne
padifferensell form skrives

vdv+ gdz+d—P+dWS+dF:0
r

L aoss nakonsentrere oss om rerstramning hvor arbeid ikke utfares og hvor heydedifferanser blir
av underordnet betydning. Dette siste er oftetilfellefor gasstremning pagrunn av lav tetthet. Altsa
med g dz = 0, dW, = 0 og med

2
dF =41 xtsqL
2D

far vi:

vdv+d—P+ 4f ﬁd—L=0
r 2D

Denne ligningen kan ikke integreres direkte da bade v og P vil variere med L. Imidlertid kan vi
introdusere massestrammen pr. m? rartverrsnitt G. Denne vil vaare konstant silenge tversnittet er
konstant.

_ massestrgm _

G= — =
rartverrsnitt

VX -V dler v=V G
\Y

Bade ? og v endres nedover et rer, men produktet er konstant. (Husk ? = 1/V).
Innsatt og med deling pa V2 gir dette:

2
G2><d_v+£+4f G

vV Vv

dL= 0%(2.11- 5)

N& har vi fétt fjernet den variable koeffisienten foran dL og det eneste som stér igjen er afinneen
relagon mellom Pog V. (I parantes: f er ogsa konstant da Re = GD/u = konst.)



Integrerer mellom posigonene 1 og 2

. 2
a/,0 dP DL

G Ing—=x+ y—+ 21 xG*x—=0
Vig 1V D

Integral-leddet vil variere etter hva dags tilstandsendring man har.

| soterm stregm av idedll gass

innsatt og integrert

Vo, M DL
2InY2+ M (p2-p2)+ 2f g2—=0
G 2RT( ;- Pl S

1

Og dapV = konstant, siden T er konstant:

a0 M [, ,DL _ . .
G’InC—++ —(P3-P?)+ 2f G2—=0x2.11- 8 i Geankoplis
gng ZRT( 2 1) D 0 plis)

Eksempel

Pumping av gassi rerledning pahavbunnen er oftetilnaamet i soterm idet varmetapet til §gvannet
gjer at gassen snart tiller seg inn pa §evannets temperatur.

Beregn trykkfallet i en rerledning pa 10 km, med ID = 0.6 m som frakter 50 m®/s av metan (regnet
ved 288 K og 100 kPa). Transporten antas isoterm ved 6°C og starttrykket er 3000 kPa. Anta
idedll gass. M, = 16 og {1 = 0,011 x10° kg/m xs, &D = 0.001.

Massestrgm av metan
Gz 50:r :SOYM P 1 :50y0.016:100000y 1 - 1182 kg/ s
Ao RT A 8.314 X288 R>O 62
i
Ro= G:D_ 118.2:0.6 = 6.5%10°

m  0.011x03



Ved e/D =0.001 er f = 0.005

Lk 2 12)020 =2.28%10° kg’ / m'* s’

2f xg2x— = =0011182)

Fa&r da

| utgangspunktet fordrer dette prave/feilelasning, eventuelt lasning i feks Matlab. Somvi har vaat
inne pafor inkompressibel stramning sdkan ofte det kinetiske leddet negligeres (G In(P,/P,) » 0).
Dette kan ogsa vage tilfelle for gass-stramning om ikke hastighetene er for haye.

Fér da:

P - P§=2ﬂ>‘( 2.28410°)

P,=+/(3x10°) - (26314 x279x2.28 x10°/ 16) = 2887 kPa

Ma sa se om var antakelse om negliserbar kinetisk energi semmer:

G2 |n§1 9 54042.28 10°
er2g

Faktisk er trykktapet sa lite at en inkompressibel beregning ville ha vaat tilstrekkelig. (Bruk da
midlere tetthet.)

Kritisk trykkfall.

N&r trykkfallet i et rarstrekk eller over en innsnevring blir hgyt, kan gassens hastighet na
lydhastigheten(sonisk hastighet). Vi snakker da om kritisk eller strupet stramning.

| sotermt.

P, M | DL

G*An +ﬁ(Pz Pi)"‘E)GZXE:O

P,

Laosssehvasom skjer med stramningsraten G nar trykkfallet eker, dvsnar P, minker. N&r P, =P,
blir G=0. Detteer innlysende og triviglt. Imidlertid er grenseverdien for Gnér P, ® 0 ogsa0 (Izs
ligningen mhp. G* og bruk L'Hospitals regel).



® Siden vi ved dle andre P, har en G somikke er 0 samaet maksimum eksistere mellom P,
=P,ogP,=0.

Deler ligningen pd G* og deriverer mhp. P,. Legg merketil at friksoondeddet faller bort. Altsaer
det trykkfallet som bestemmer om man far kritisk stramning, og den maksimale stramningen er
uavhengige av frikgonen i ledningen:

M M 4G
et —x—— X2 + 2 _p2 ) '3X—:0
2P:)+ oo {P2-PA)(-2) G -

2

Maksimum finnes for dG/dP, = 0 (merkede verdier for maksimum)

p l - l VM )QPZ, p G’Z:ﬂXPZ,Z
P, G2 2RT RT

Her er P, det trykket som gir maksimal stramning G. Naer

RT )
PV 1= V: P, V., (isotermt)

P2
V.,

G?2=
og hastigheten blir:

v =2=Gb G =
\ Vo

V2 =4/ P2 W/

Dette er den maksimale stremningshastigheten som kan oppnas ved isoterm drift. Den kalles ofte
"isoterm lydhastighet” selv om den ikke eksakt er lik lydhastigheten under de gitteforhold. Trykket
P,' kan finnesved & setteinn for G (G = P,'/V,) i energiligningen averst og l@se for P,'.

P | ;

g, ‘

Hvis P, < P, kallestrykkfallet overkritisk og stramningshastigheten gisav hastigheten v, uansett
verdien paP,.



| sentropisk stregmning

Isentropisk stremning vil s adiabatisk frikgonsfri stramning. Man kan tro at dette er et skjeldent
forekommende tilfelle, men ofte er frikgonen i gass-strammer relativt liten og man kan starte med
en isentropisk tilnearming og deretter innfare korreksjonsfaktorer; noe vi skal se pa senere.

| det idedlletilfellet at stremningen er adiabatisk og reversibel har vi:

P x/9 = konst.

Her er g= Cp/Cv. Integrerer vi dP/V f& vi:

samtidig som

Innsatt | energiligningen gir dette:

g+l

G’ ><—>4n LI P
g ePz;zs g+1V

DL
0 -1U+ 2f G2—=0
1 0 g D

=
2

Skal isentropisk stregmning realiseres ma friksjondeddet vage lik O.
P& samme médte som for isoterm stregmning kan dette vises & gi en maksimal hastighet
V2= /0 XP2 X/

Her er P, og V , henholdsvis det trykk og det spesifikke volum som gir kritisk(sonisk ) hastighet, og
derved maksima massestram. Denne hastigheten tilsvarer lydhastigheten under de gitte forhold
(P,, V). Vi har dtsa sonisk stramning.

Adiabatisk stramning

For adiabatisk stremning hvor vi ogsa har frikson kan man fa et tilnea'met riktig svar ved a bruke



ligningene for isentropisk stramning med ? som angitt, og sd inkludere frikgonseddet. Man ber
elersbruke P xV* = konst. hvor 1 < k < 2, som kalles polytropisk endring. Imidlertid er k normalt
ikke kjent. En dternativ mate a lase problemet pa er gitt i Coulson & Richardson, vol 1, men tas
ikke med her.

Lydhastigheten

Lydhastigheten er forplantningshastigheten til en trykkfront av infinitesmal styrke. Dettevil S at
endringen over trykkfronten er tilneamet reversibel.

PJL

AP;— i _"\\—plnmhﬂlﬂt'E' [

dp = Liten,

Alle gassens egenskaper vil endre seg over denne trykkfronten

T+dT > T
vV +dv=adv v=0
V +dVv \
P+dP P
—>
front

Laosstenke oss et lite kontrollvolum lagt rundt denne fronten og at vart aksesystem beveger seg
med frontens hastighet. Lan&samtidig fronten bevege seginni et stillestdendefluid. Dablir bildet:

T+dT Konltrollvoll um T
v=c—av D!« v=c
V +dVv i i \%
P+dP | | P
front
Vére balansdigninger ma gjelde
Kontinuitet:
C_ Cc-dv
=== (1)
V V+dv
Impuls:
Ac
P xA- (P + dP)xA= va Xc-dv c) 2
generert = ut-inn
Impulsbalansen gir:
dp= S 3)



Eliminerer dv mellom impuls og masseba anse:

2 VvZdP
dv
Na er forplantningshastigheten av en trykkbglge relatert til et fluids el astisitetsmodul

(4)

_ endring i spenning i fluidet _ dpP
resulterenderelativevolumendring  aslV ¢
eV g
e=-v P 5)
dv
(4) og (5) gir:
dP e ¢?
== (6)
av. V v
eller
c=ex/ (7

Settes ? = 1/V og benyttes dP/dV = (d?/dV) (dP/d?) fas:
f vZdP fdP
= - = _— 8
¢ dv dr ®

Denne utledningen gjelder bare for infinitesimale dP, altsa for isentropiske forhold dlik at den
korrekte ligning blir:

c er atsa her lydhastigheten.

P
szﬂ_s

qr
For normale trykkfronter vil vi altid hairreversibiliteter dik at ?S?* 0 over fronten.

Strgmning i varierendetverrsnitt

Vi ska na se pa hvordan et kompressibelt medium oppfarer seg i rar med varierende tverrsnitt,

f.eks. dyser. Bruker da kontinuitetdigningen generelt eller vi kan derivere den:
r :v: A= konst.

v:A:dr +r :A:dv+r :v:dA=0
Delerpar :v:A



d_A+ﬂ+d_r:0 (9)
A Vv

og bruker denne sammen med energiligningen for isentropisk stremning

P viv=0 (negligerer gid) (10)
r

eliminerer dP og d? fra(8), (9) og (10) og innfarer Ma = machtallet = v/c
dv_dAzxe 1 0

v AéMa-1g
Dette er en ligning som viser hvordan hastigheten endrer segi et rar nér tverrsnittet forandres. Nar
Max<1, dvsfor underlydshastigheter(subsoniske forhold), vil nevneren pa hgyre side vaare negativ
og gasshastigheten vil gke med minkendetverrsnitt. Dette er intuitivt riktig. Er imidlertid Ma>1 sa
vil nevneren pa hgyre side bli positiv og vi ser da at hastigheten gker ndr tverrsnittet eker.

(11)

Ma<1® synkende A gir gkende v
Ma>1® gkendeA gir gkendev

Og for i det hele tatt & oppna supersoniske hastigheter, overlydshastigheter, sA mavi ha kritisk
stramning et eller annet sted. Fra dette punktet ma tverrsnittet ekspandere.

Ser paisentropisk stramning i dysen gitt i figuren.

ﬁ
|

e P1 U’l 2 U_l
i |

/\l

Setter opp energiligningen (10), ogintegrerer mellom snitt 1 og 2. Tar ikke med friksjond eddet til &

begynne med. Dyser er i utgangspunktet utformet for & ha minimal frik§on og vi justerer for
frikgon til dutt med en konstant.

ot '5.3?

o e

Vi LA
Yo Vi, vdP=0
2 2 9/

Antasndat v,* << v,’ og integreres VdP under isentropiske forhold, fas




og nadvendig tverrsnitt A, kan finnes fra kontinuitetigningen
G(kg/s)= konst.

A= G(:V2
\'

Hvis trykket B er lavt nok, vil B innta en minimumsverdi som korresponderer med sonisk
stremning i trangeste tverrsnitt.

For en gitt G' vil det til ethvert trykkforhold, P,/P, svare et nadvendig trangeste tverrsnitt.
Hvaskjer named A, nar trykkforholdet synker?

-2
Vi(ER )y
Ag: G! 2%

29
(9-1)

-2
_G*vi(9-), we
2p,9 € 12U
€

Deriverer A,> mhp. trykkforholdet w = P,/P, og setter dA,*/dw = 0.
Finner da et ekstremal punkt i

9
m-1

-
We— - =
B TR
Dette er et minimum og A, gar altsd giennom et minimum ndr w synker. Dette tilsvarer & finne

maksimum G' nar A, er gitt og w synker. Trykkforholdet som gir denne maksimae stregmning
kalles det kritiske trykkforholdet, w,. Maksimal stremning finnes ved tilbakesubstitugoni ligning

V2c: g XPZVZ

(14) og den tilsvarende hastighet v, blir
som vi har sett tidligere er dette lydhastigheten.

Altsa har giennomstramningen G' et maksimum ogsa for dyser, svarende til sonisk hastighet i
trangeste tverrsnitt. Hastigheten vil derimot kunne stige videreinn i det supersoniske omradet som
vi har sett. Ekspansjonen videre i en divergerende del av dysen er ogsa tilnaarmet isentropisk.

|sentropisk ekspansgon gjennom en dyse med béde konvergerende og divergerende del kan da
beskrives som:



infimity withu,=0

T P._l|

Pz

i

Downstream
pressure Py—= @

Pea

Position along nozile
bl

fch

Feii. 4.5 Flow through converging-diverging nozzies,

Case 1. Back-pressure Py quite high. Curves | show how pressure and velocily
change along the nozzle. The pressure falls to a minimum at the throat and
then riscs to a value P, = P,. The velocity increases to maximum al the
lh!‘ﬂat (less than sonie velocity) and then decreases lo a value of ty, ot the
exil ol’l the nozzle. This situation corresponds to conditions in a venturi
operating entirely al subsonic velocities,

Case 1. Back-pressure reduced {curves 11} The pressure [alls to the critical value at
the throat where the velocity is sonic. The pressure then rises to Pey = Pyat

the cxil. The velocity rises 1o the sonic value at the (hroat and (hen falls o
uy; al the outlet,

Case 1. Back-pressure low, with pressure less than critical value at the exit. The
pressure falls to the eritical value at the throat and continucs to fall io give
un c:fi: pressure Iy = Py, The velocity increases to sonic at the throat and
continues 1o increase to supersonic in the diverging cone 1o a value T

Fra Coulson & Richardson; Chemical Eng., Vol. 1.

Hva skjer nd om nedstramstrykket P; ligger mellom P, og Pe,? Daer P, for hayt til akunne gi en
fullstendig isentropisk ekspangion i den supersoniske delen og et trykksprang vil oppsta. Et dikt
trykksprang kalles et 5okk eller en gokkbglge.



Denne g okkbglgen har en hastighet lik gasshastigheten i posi§ on z, men motsatt rettet. Fronten vil
atsdstai roi forhold til dysen. Bade pa opp- og nedstrams-siden av 5 okkbelgen kan man regne
isentropisk tilstandsendring. Over gokket er det irreversibiliteter dik at

Snedstr. > S

oppstr.

Trykkendringen vil ogsa fare en overgang fra supersonisk til subsonisk stramning.
En annen mulighet er at strammen i den divergerende delen beholder sin supersoniske karakter,
men "lasner” fraveggene. Den blir datil et jetstram.



