
1

FORORD

Denne lefsa er ikke ment som en lærebok, men gir en kortfattet innføring i de
mest brukte kommandoer og konstruksjoner i Matlab basert på eksempler. Den
siste versjonen av Matlab er 6.1 som er innstallert på datasalen. Denne lefsa
bruker ingen av de nye tingene som er introdusert i den siste versjonen.

MTF-NTNU Februar 2002

INNLEDNING

Matlab er et interaktiv program som er laget spesielt for tekniske og
vitenskapelige beregninger. Det ble opprinnelig skrevet av Cleve Moler i slutten
i 70-årene for å teste store Fortran programpakker i numerisk lineær algebra
som Linpack og Eispack. Programmet har siden utviklet seg sterk med blant
annet et eget programmeringspråk, sterk grafikk og objektprogrammering. I
tillegg fåes spesialskrevne moduler innen en rekke fagområder (Toolboxes)

Det finnes mye litteratur om Matlab og her skal vi bare nevne noen få.

[1] A.Strømhylden og E. Wahl : Introduksjon til Matlab. Tilleggshefte til
Innføring i Informasjonsteknologi
Tapir 1999

[2] F. Haugen : Lær Matlab trinn for trinn
TechTeach 2001

[3] E. P. Enander & A. Sjöberg : Användarhandledning för Matlab5
Uppsala Universitetet 1998

[4] Higham & Higham : Matlab Guide
SIAM 2000

[5] C. F. Van Loan : Introduction to Scientific Computing
Prentice-Hall , 2.utgave 2000

Referansene [4] og [5] inneholder Matlabprogrammer som kan lastes ned.
For liste over bøker som bruker/omhandler Matlab :
www.mathworks.com/support/books

2

HJELPESYSTEM

Start med help help dersom du ikke vet hvordan hjelpesystemet brukes.
Istedenfor (eller i tillegg til) help kan vi bruke doc. Hjelpesystemet åpner nå et
eget vindu. doc gir vanligvis mer omfattende informasjon enn help.

Skriv help for å gi en liste over søkeemner :
» help

HELP topics:

matlab\general - General purpose commands.
matlab\ops - Operators and special characters.
matlab\lang - Programming language constructs.
matlab\elmat - Elementary matrices and matrix manipulation.
matlab\elfun - Elementary math functions.
matlab\specfun - Specialized math functions.
matlab\matfun - Matrix functions - numerical linear algebra.
matlab\datafun - Data analysis and Fourier transforms.
matlab\audio - Audio support.
matlab\polyfun - Interpolation and polynomials.
matlab\funfun - Function functions and ODE solvers.
matlab\sparfun - Sparse matrices.
matlab\graph2d - Two dimensional graphs.
matlab\graph3d - Three dimensional graphs.
matlab\specgraph - Specialized graphs.
matlab\graphics - Handle Graphics.
matlab\uitools - Graphical user interface tools.
matlab\strfun - Character strings.
matlab\iofun - File input/output.
matlab\timefun - Time and dates.
matlab\datatypes - Data types and structures.
matlab\verctrl - Version control.
matlab\winfun - Windows Operating System Interface Files
(DDE/ActiveX)
matlab\demos - Examples and demonstrations.
toolbox\local - Preferences.
MATLAB6p1\work - (No table of contents file)

For more help on directory/topic, type "help topic".
For command syntax information, type "help syntax".

help general og help ops gir mange nyttige kommandoer

Lista viser at dersom vi f. eks ønsker å vite hvilken elementære matematiske
funksjoner som finnes, skriver vi help elfun.
En annen nyttig søkekommando er lookfor. (skriv help lookfor)

3

VARIABLE

Navn på en variabel må begynne med en bokstav, fulgt av en vilkårlig rekke av
bokstaver, tall og understrekningsymbolet (_). Mellomrom er ikke tillatt. Bare de
31 første tegnene er signifikante. Merk at Matlab skiller mellom store og små
bokstaver slik at f. eks. Pi og pi er to forskjellige variabler.

Spesielle symboler

[] Ved definisjon av matriser
() Indekser
' ' (To apostrofer). Markerer en streng
, (Komma): Skiller indekser eller matriseelementer
; (Semikolon): 1. Hindrer utskrift i kommandovinduet

2. Skiller linjer i matriser
3. Skiller programsetninger på en linje

% Markerer begynnelsen på en kommentar-setning
: Kolonoperator. Liste og matrise-generator
+ Addisjon
– Subtraksjon
* Multiplikasjon
.* Elementvis multiplikasjon
/ (Høyre) divisjon
./ Elementvis (høyre) divisjon
\ Venstre divisjon
^ Eksponentiering
.^ Elementvis eksponentiering
' (Enkel apostrof) : Transponering
... Tre prikker etterhverandre ved skriving i kommandovinduet angir

fortsettelse på neste linje.

Predefinerte variable

pi 3.141592...
i Imaginær enhet, 1�

j Imaginær enhet, 1�
eps Relativ nøyaktighet, 52 162 2.22 10� �

� �

realmin Minste flyttall, 1022 3082 2.23 10� �

� �

realmax Største flyttall. 1023 308(2 eps) 2 1.8 10� � � �

Inf Uendelig, eks 1/0
NaN Ikke-et-tall, eks 0/0

Disse variable er ikke beskyttet og kan redefineres. Får tilbake sine opprinnelige
verdier ved å bruke clear.

4

Eksempel :
» pi
ans =
 3.1416
» pi = 3.0
pi =
 3
» clear pi
» pi
ans =
 3.1416

Det er normalt ikke noen god ide å redefinere pi, mens i og j derimot brukes
ofte som indekser slik at det kan bli nødvendig å omdefinere disse. Generelt
bør en forsøke å unngå redefinering.

FILKOMMANDOER

Når vi er i kommando-vinduet, finnes det en rekke kommandoer vi kan bruke til
å gi liste over filer, hoppe fra en mappe til en annen osv. Alle disse operasjonene
kan selvfølgelig gjøres i Windows, men i enkelte tilfeller er det raskere å utføre
dem som kommandoer istedenfor å bruke musa. Mange av disse kommandoene
har ekvivalente kommandoer hentet fra det underliggende operativsystemet. Ved
å starte kommandolinja med et utropstegn, antar Matlab at det som følger er en
operativsystemkommando.

Liste over noen kommandoer : (skriv help general)

what Gir en liste over M-filer i den mappa du er i
dir Gir liste over filer og mapper i den mappa du er i
cd brukes til å hoppe fra en mappe til en annen
copyfile Kopierer innholdet av en fil til en annen. Dersom den andre fila

ikke eksistere, blir den opprettet. Flytter også filer fra en mappe
til en annen.

delete Sletter filer
mkdir Lag en ny mappe.

Nedenfor er vist en seanse der vi bruker noen av disse kommandoene.
Bruk help til å finne den nøyaktige syntaksen for hver av kommandoene.

» dir
. .. Blasius Eks193 Falkner Kap2 tull.m Øving3
» what
M-files in the current directory c:\myfiles\matlabprog\sio1054
tull

5

» mkdir test
» copyfile tull.m test
» cd test
» dir
. .. tull.m
» delete tull.m
» cd ..
» dir
 . .. Blasius Eks193 Falkner Kap2 test tull.m Øving3

Merk : en prikk er en forkortelse for navnet til den mappa du er i, mens to
prikker er en forkortelse for den overliggende mappa (parent directory)
Vi nevnte ovenfor at dersom du setter et utropstegn foran en kommando,
oppfattes dette som kall av en systemkommando.(Se forskjellen på
dir og !dir). Den første er en Matlab-kommando mens den siste er en Windows-
kommando. Dersom du ønsker å døpe om en fil, kan du bruke Windows-
kommandoen ren : !ren minfil.m dinfil.m som døper om filen minfil.m til
dinfil.m.
Dersom du eksempelvis ønsker å omdøpe alle filene som ender på for til filer
som ender på m, kan dette gjøres enkelt ved : !ren *.for *.m

MATRISER OG VEKTORER

Skriver inn en 3 3� matrise. Semikolon angir slutt på hver matriselinje.

» A = [1 2 3; 4 5 6; 7 8 9]
A =
 1 2 3
 4 5 6
 7 8 9

Kan plukke ut hoveddiagonalen ved :

» diag(A)
ans =
 1
 5
 9

diag kan brukes til å plukke ut andre diagonaler (Se help diag)

Linjevektor :

» a = [10 11 12]
a =
 10 11 12

Kolonnevektor :

6

» b = [13; 14 ;15]
b =
 13
 14
 15

Får en kolonnevektor ved å transponere en linjevektor :

» a'
ans =
 10
 11
 12

Får en linjevektor ved å transponere en kolonnevektor :

» b'
ans =
 13 14 15

Ved å transponere A bytter vi om linjer og kolonner

» A = A'
A =
 1 4 7
 2 5 8
 3 6 9

Velger ut den første kolonna i A :

» a = A(:,1)
a =
 1
 2
 3

Velger ut den første linja i A

» b = A(1,:)
b =
 1 4 7

Velger det siste elementet i den første kolonna i A:

» A(end,1)
ans =
 3

7

Velger det siste elementet i den tredje kolonna i A:

» A(end,3)
ans =
 9

» b = b'
b =
 1
 4
 7

Lager en ny B matrise ved å sette sammen to kolonnevektorer :

» B = [a b]
B =
 1 1
 2 4
 3 7

Lager en ny C matrise ved å sette sammen de to matrisene A og B

» C = [A B]
C =
 1 4 7 1 1
 2 5 8 2 4
 3 6 9 3 7

Finner antall elementer i vektoren b:

» length(b)
ans =
 3

Finner dimensjonene av matrisa C:

» size(C)
ans =
 3 5

Lager en linjevektor av elementene 2,3,4 i første linje av C:

» d = C(1,2:4)
d =
 4 7 1

Lager en kolonne-vektor av elementene 1,2 i første kolonne av C:

» d = C(1:2,1)

8

d =
 1
 2

Setter d lik siste kolonne i C:

» d = C(:,3)
d =
 7
 8
 9

Adderer et element til begynnelsen og slutten av d . Merk at
Matlab øker dimensjonene dynamisk:

» d = [0;d;0]
d =
 0
 7
 8
 9
 0

Merk at vi kan addere en skalar direkte til en vektor selv om dette strengt tatt
ikke er en tillatt vektor-operasjon

» b = d +1
b =
 1
 8
 9
 10
 1

Vi har også tomme matriser. Disse markeres med [] (to hakeparenteser).
Kan f.eks brukes til å fjerne en kolonne eller linje fra en matrise.

»A
A =
 1 4 7
 2 5 8
 3 6 9
» A(:,3) = []
A =
 1 4
 2 5
 3 6

9

AUTOMATISK GENERERING AV VEKTORER OG MATRISER.

Kan bruke kolonnotasjon i:j:k der i = startverdi, j = inkrement og k =
sluttverdi. Dersom inkrementet utelates, antas inkrement = 1

» a = [1:5]
a =
 1 2 3 4 5

» a = [1 :0.5 : 3]

a =
 1.0000 1.5000 2.0000 2.5000 3.0000

Kan bruke vanlige parenteser eller helt utelate parenteser for linjevektorer :

» a = 1:0.1:1.5
a =
 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000

» b = 7:-1:1
b =
 7 6 5 4 3 2 1

Kan også bruke linspace:

» d = linspace(1,2,4)
d =
 1.0000 1.3333 1.6667 2.0000

Syntaks : linspace(venstre endepunkt, høyre endepunkt, antall punkt)
Dette betyr at linspace genererer n ekvidistante punkt der d(1) = a
og d(n) = b . Dersom antall punkt utelates, velges 100. (Se også logspace)

De følgende kommandoene brukes ofte til å initialisere vektorer og matriser

» a = zeros(5,1)
a =
 0
 0
 0
 0
 0

» b = ones(1,5)
b =

10

 1 1 1 1 1

» D = eye(3)
D =
 1 0 0
 0 1 0
 0 0 1

Her er et eksempel på bruk av indeksvektor. Merk at a blir en kolonnevektor
fordi vi har brukt a = zeros(5,1) ovenfor. Om indeksvektoren er kolonne- eller
linjevektor betyr ikke noe i dette tilfellet.

» j = 1:5
j =
 1 2 3 4 5

» a(j) = j*0.1
a =
 0.1000
 0.2000
 0.3000
 0.4000
 0.5000

Indeksvektorer brukes også til såkalt indirekte addressering.

»a = a';
» v(1) = 1; v(2) = 5; v(3) = 2;
» v
v =
 1 5 2

» b = a(v)
b =
 0.1000 0.5000 0.2000

Elementvise operasjoner

» x = linspace(pi/3,pi,6)
x =
 1.0472 1.4661 1.8850 2.3038 2.7227 3.1416

» y = x.*x
y =
 1.0966 2.1494 3.5531 5.3077 7.4132 9.8696

» y = sin(x).*x
y =
 0.9069 1.4580 1.7927 1.7121 1.1074 0.0000

11

» y = sin(x)./x
y =
 0.8270 0.6784 0.5046 0.3226 0.1494 0.0000

» y = sin(x).^2
y =
 0.7500 0.9891 0.9045 0.5523 0.1654 0.0000

Tilslutt sorterer vi y:

» y = sort(y)
y =
 0.0000 0.1654 0.5523 0.7500 0.9045 0.9891

Her er flere måter å beregne skalarproduktet på

» y = sum(x.*x)
y =
 29.3895

» y = x'*x
y =
 29.3895

» y = dot(x,x)
y =
 29.3895

LØSNING AV LIGNINGSYSTEM

Vi skal løse systemet � �A x b . Løsningen kan skrives symbolsk
ved �

-1x = A b . Det er mulig å beregne den inverse av A-matrisa og deretter
multiplisere med b, men dette er ineffektivt. Løsning av ligningsystemet i
Matlab skrives x = A\b der b er en kolonnevektor. Operatoren \ kalles venstre
divisjon (heller mot matrisa som skal «divideres» på ; symbolsk kan -1A
oppfattes som divisjon.
Merk at b/A ikke er definert. Derimot kan vi beregne b'/A der
b'/A = b'*inv(A). (Husk at her er b' en linjevektor)

Eksempel 1

» A = [-3 3/2 0; 3/4 -9/4 5/4; 0 5/6 -19/9]
A =
 -3.0000 1.5000 0
 0.7500 -2.2500 1.2500
 0 0.8333 -2.1111

12

» b = [1/2 1 3/2]'
b =
 0.5000
 1.0000
 1.5000

» x = A\b

x =
 -0.8952
 -1.4571
 -1.2857

» format rat
» x
x =
 -94/105
 -51/35
 -9/7

Da matriseelementene her er rasjonale tall, kan vi få løsningen på pen brøkform.
Dette gjøres ved å forandre utskriftsformatet for kommando-vinduet fra format
til format rat. Går deretter tilbake til format short (Se help format)

» format

Eksempel 2

A =
 0.4096 0.1234 0.3678 0.2943
 0.2246 0.3872 0.4015 0.1129
 0.3645 0.1920 0.3728 0.0643
 0.1784 0.4002 0.2786 0.3927

b =
 0.4043
 0.1550
 0.4240
 -0.2557

>> x = A\b
x =
 -0.0061
 -1.5556
 2.0315
 -0.5043

13

PROGRAMMERINGSDEL

Til nå har vi sett på bruk av Matlab som kalkulator. De konstruksjonene og
kommandoene som følger her, blir vanligvis brukt i program selvom de også kan
skrives direkte i kommandovinduet. Programmene skrives med en tekst-editor
Den innebygde editoren er vanligvis god nok, da Matlabprogrammene normalt er
små. Er det behov for en mer sofistikert editor, finnes TextPad ved NTNU.
Programmene blir lagt i filer med endelse m. Kalles derfor M-filer. Eks. : Prog.m
Har to typer M-filer: Skript M-filer, også kalt kommando-filer samt funksjons M-
filer som inneholder en funksjonsdefinisjon.

LOGISKE UTTRYKK

Matlab har ikke logiske variable. Alle logiske uttrykk får verdien 1 eller 0 der
sant = 1 og usant = 0.

Sammenligningsoperatorer (Skriv help/doc ops)
< mindre enn
<= mindre eller lik
== lik
>= større eller lik
> større enn
~= ikke lik (ulik, forskjellig)

Når a og b er tall, blir a == b, a > b , a ~= b eksempler på logiske uttrykk.

Logiske operatorer (Skriv help ops)

& både og (and)
| enten eller (or)
xor eksklusiv eller(exclusive or)
~ negasjon (not)

I tillegg har vi any og all

Husk at sant = 1 og usant = 0. La A og B være to logiske
uttrykk.Sannhetstabellen nedenfor viser verdiene ved bruk av operatorene.

and or xor not

A B A&B A|B xor(A,B) ~A

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

14

Eksempler

a = 1, b = 2, c = 3 ,d = 4

» y = (a<=1)| (c>a)
y =1

» y = (a > 1)& (d >b)
y =
 0

» y = (a == 1)& (d ~=b)
y =
 1

» y = xor((a == 1) , (d ~=b))
y =
 0

De logiske uttrykkene brukes ved forgreininger og løkker.

FORGREININGER

Kommandoer: if, else, elseif . (Dessuten kommandoen switch)

Variant 1

if logisk uttrykk
setninger

end

Setninger utføres bare dersom det logiske uttrykket = sant.
Eksemplet kan også skrives på en linje:

if , logisk uttrykk, setninger, end

Denne siste formen kan lett bli uoversiktelig.

Variant 2

if logisk utrykk
 setninger1
else

setninger2
end
setninger1 utføres dersom det logiske uttrykket = sant ellers
utføres setninger2.

15

Variant 3

if logisk utrykk1
 setninger1
elseif logisk uttrykk2

setninger2
else

setninger3
end

setninger1 utføres bare dersom logisk uttrykk1 = sant. setninger1 og 2 blir da
ikke utført. Dersom logisk uttrykk1 = usant utføres bare setninger 2 dersom
logisk uttrykk2 = sant. Dersom både logisk uttrykk1 og 2 = usant utføres
setninger3 (og bare da).

Ved bruk av sammenligningsoperatorer kan de variable være vektorer og
matriser. La x og y være vektorer med n komponenter. Da vil if x < y bare være
sant dersom i ix < y , i = 1,2, .. n . Tilsvarende for matriser.

Et eksempel der vi kan bruke konstruksjonen fra variant 3

Anta at vi skal regne om tallkarakterer til bokstavkarakterer og følgende
relasjoner er gitt :

[1.0 1.75] , (1.75 2.25] , (2.25 2.75]

(2.75 3.25] , (3.25 4.25] , > 4.25 (st ryk)

A B C

D E F

� � � � � �

� � � � �

Som Matlab-kode :

if (tallk <= 1.75)
 disp ('Karakter er A');
elseif (tallk <= 2.25)
 disp ('Karakter er B');
elseif (tallk <= 2.75)
 disp ('Karakter er C');
elseif (tallk <= 3.25)
 disp ('Karakter er D');
elseif (tallk <= 4.25)
 disp ('Karakter er E');
else
 disp ('Karakter er F (stryk)');
end

Merk at parentesen rundt f.eks (tallk < 1.75) ikke behøves.

16

ITERASJONSLØKKER

Matlab har to kommandoer, for og while, for gjentatt utførelse av setninger.

Den generelle syntaksen for en for- løkke er :

for variabel = uttrykk
setninger

end

variabel er navnet på løkke-variabelen (Løkka kan, om ønskelig , skrives på en
linje).

Eksempel
>> for k = [1 2.5 3 4.5]
x= k^2
end

x =
 1
x =
 6.2500
x =
 9
x =
 20.2500
>>

Her er uttrykk en vektor slik at løkkevariabelen k forløpende går gjennom
verdiene i vektoren.
Det vanligste er at uttrykk tilordner en startverdi, en inkrement-verdi og en
sluttverdi til løkke-variabelen. Inkrementet kan være både positivt og negativ
eller det kan utelates. I det siste tilfellet antas 1 som inkrement-verdi. Vanligvis
brukes kolonnotasjonen til å definere løkke-variabelen. Vi kan ha flere løkker
inne i hverandre :

for variabel1 = uttrykk1
setninger1
for variabel2 = uttrykk2

setninger2
end

end

Eksempel

» A = zeros(4);
» for k = 1:3
 A(k,k) = 4;
 A(k,k+1) = 1;

17

 A(k+1,k) = 1;
 end
» A(4,4) = 4;
» A
A =
 4 1 0 0
 1 4 1 0
 0 1 4 1
 0 0 1 4

Kommandoen while utfører setninger så lenge et logisk uttrykk er sant.
Den generelle syntaksen for en while-løkke er :

while logisk uttrykk
setninger

end

setninger blir ikke utført dersom det logiske uttrykket er usant. Også her kan vi
ha flere løkker inne i hverandre.

Merk at både for og while tester på den første linja i løkka .Dersom man ønsker
å hoppe ut av løkkene andre steder, kan det gjøres ved å bruke kommandoen
break. Merk at break bare gir uthopp fra den innerste løkka dersom det er flere
løkker. Dersom break brukes utenfor for og while-løkker, stoppes
eksekveringen av programmet. Dette kan være nyttig ved feilfinning.

Nedenfor er noen typiske varianter på bruken av for og while i iterasjonsløkker.
Som eksempel ser vi på en iterasjonsprosess der vi skal finne kvadratrota x av et
tall c : x c� . Matematisk er dette ekvivalent md å finne nullpunktet av
funksjonen () 0f x � der 2()f x x c� � . Ved bruk av Newton-Raphsons metode får
vi følgende iterasjonsprosess :

1

2

, 0,1,...

()

2

m m m

m
m

m

x x x m

x c
x

x

�
� � � �

�
� � �

For å starte iterasjonsprosessen, må vi tippe en startverdi 0x . Dessuten
må vi ha et stoppkriterium. For å være spesifikk, velger vi 20c � ; vi skal finne

20x � . Velger startverdi 0 5x � .

18

Variant 1

% Program VARIANT1
itmax = 10; epsi = 1.0e-5; x = 5.0;
c = 20.0;
it = 0;
while 1
 it = it + 1;
 if it > itmax
 disp('*** Maks. antall iterasjoner ***');
 break
 end
 dx = -(x^2 - c)*0.5/x;
 x = x + dx
 if abs(dx) < epsi
 break
 end
end

dx =-0.5000
x = 4.5000

dx = -0.0278
x = 4.4722

dx =-8.6266e-005
x = 4.4721

dx =-8.3203e-010
x = 4.4721

>>
Dette er en evighetsløkke da betingelsen while 1 alltid er oppfylt. Uthopp fra
løkka skjer enten når maks. antall iterasjoner er overskredet eller når
konvergens er oppnådd. Selv om vi skriver ut verdien av it og dx, er det lurt å
gjøre oppmerksom på at maksimalt antall iterasjoner er overskredet.

Variant 2

% Program VARIANT2
itmax = 10; epsi = 1.0e-5; x = 5.0;
c = 20.0;
for it = 1 : itmax
 dx = -(x^2 - c)*0.5/x;
 x = x + dx;
 if abs(dx) < epsi
 break
 end

19

end
if it >= itmax
 disp('*** Maks. antall iterasjoner ***');
 break
 end

(Resultat som for variant1)

Denne løkka som utføres maksimalt itmax ganger, er mer kompakt. Uthopp fra
løkka før maks. antall iterasjoner er oppnådd, skjer dersom vi har konvergens.
Utskrift om maks. antall iterasjoner ligger nå etter løkka.

Variant 3

% Program VARIANT3
itmax = 10; epsi = 1.0e-5; dx = 1.0;
x = 5.0; c = 20.0;
it = 0;
while (it <= itmax) & (abs(dx) > epsi)
 it = it + 1;
 dx = -(x^2 - c)*0.5/x;
 x = x + dx;
end
if it > itmax
 disp('*** Maks. antall iterasjoner ***')
 break
end

(Resultat som for variant1)

Denne løkka utføres bare dersom it <= itmax og samtidig dx > epsi. Forat løkka
skal utføres minst en gang, må dx ved inngang settes til en verdi større enn epsi.
Det skjer ingen uthopp fra løkka. Antall iterasjoner må nå telles dersom vi vil
følge iterasjonsprosessen. Utskrift om maks. antall iterasjoner ligger nå som i
variant2, etter løkka. Vi skal se på noen eksempler på bruk av variant 2 og 3
etter vi har sett litt nærmere på funksjoner.

FUNKSJONER

Funksjoner programmeres i funksjons M-filer og tilsvarer det som generelt kalles
subprogram. Dette er program som brukes av andre program.

Generell syntaks : function [ut1,ut2,...utn] = fnavn(inn1,inn2,....innk)

Linja over definerer en funksjon med navn fnavn. Vi har k inn-parametre og n
ut-parametre. Dersom vi bare har en ut-parameter, kan vi utelate hake-
parentesene.

20

Vi ser på et enkelt eksempel der vi har laget en funksjon som beregner
parabelen 2y x� . Funksjonen lagres som func.m

function y = func(x)
y = x^2;
» y = func(2)

y =
 4

x og y kan være vektorer eller matriser, men da må funksjonen skrives slik at
den opererer rett på denne typen variable.

function y = func(x)
y = x.^2;
» z = [0 : 0.1 : 0.5];
» v = func(z)
v =
 0 0.0100 0.0400 0.0900 0.1600 0.2500

Legg merke til at det ikke er noen sammenheng mellom navnene på de variable
i definisjonen av funksjonen og navnene som benyttes når den brukes.
(Når vi bruker en funksjon, sier vi at vi kaller funksjonen). Men vi må passe på
at de er av samme type. Legg også merke til at da x er en linjevektor blir også y
en linjevektor. I mange tilfeller er det lurt å initialisere ut-parametrene dersom
de er vektorer og matriser. I tilfellet over kan vi f. eks. skrive :

function y = func(x)
y = zeros(size(x));
y = x.^2;

Ved å bruke size sørger vi for at funksjonen virker for både linje- og kolonne-
vektorer.

Dersom du redefinerer dine inngangsvariable inne i funksjonen, vil disse
bli mellomlagret til funksjonen er utført. (Det blir ikke laget kopi av
inngangsdata som ikke redefineres). Matlab bruker her en overførings-metode
for parametre som kalles “call by value”. Dermed blir ikke de opprinnelige
verdiene ødelagt. Dette betyr også at du ikke sparer plass ved å redefinere
inngangsdata. Merk også at alle lokale variable som defineres i en funksjon,
forsvinner når funksjonen er utført.

function y = func(x)
y = zeros(size(x));
a = 1;
y = x.^2;
x = 2*x;

21

» v = func(z)
v =
 0 0.0100 0.0400 0.0900 0.1600 0.2500
» z
z =
 0 0.1000 0.2000 0.3000 0.4000 0.5000
» a
??? Undefined function or variable 'a'.

Vi ser her at z har fremdeles sin opprinnelige verdi. Den lokale variable a som vi
definerte, blir slettet når funksjonen er utført.

Vi kan også overføre parametre ved bruk av kommandoen global.

function y = func(x)
y = zeros(size(x));
global P Q;
y = x.^2 + P + Q ;

» global Q P;
» Q = 1; P = 2;
» v = func(z)
v =
 3.0000 3.0100 3.0400 3.0900 3.1600 3.2500

Med Q = 1 og P = 2 har vi addert 3 til vektoren v . Merk at rekkefølgen av de
globale variable kan være forskjellig i det kallende programmet og det kalte
programmet. (Godt nytt for dem som er vant til Fortran). Flere globale variable
skal skilles med mellomrom; ikke komma. Sletting av globale variable ved å
bruke clear virker bare i kommandovinduet.

Subfunksjoner
Det er mulig å bruke funksjoner inne i funksjoner. En slik funksjon, kalt
subfunksjon, må ligge helt tilslutt i hovedfunksjonen.
function y = func(x)
y = zeros(size(x));
a = f(x);
y = a*x.^2;
%------------------
function fac = f(t)
fac = sum(t);
» v = func(z)
v =
 0 0.0150 0.0600 0.1350 0.2400 0.3750

Her er func hovedfunksjonen og f subfunksjonen. Skriv help function for et

22

annet eksempel.

23

EKSEMPEL PÅ BRUK AV FUNKSJONER

Nullpunksbestemmelse ved bruk av sekantmetoden.

Sekantmetoden er beskrevet i avsnitt 2.2 i kompendiet. For oversiktens skyld
gjentar vi beskrivelsen her.

Vi skal finne nullpunktet *x (kan være flere) av funksjonen ()y f x� .
Utfører en iterasjonsprosess etter følgende skjema :

1

1

1

 , 1,2,...

()
() ()

m m

m m
m

m m

x x x m

x x
x f x

f x f x

�

�

�

� � � �

� ��
� � � � � 	

�
 �

Figuren viser prosessen for m = 2. Vi har valgt å sette iterasjonsindekset m nede
da det ikke er noen fare for kollisjon med andre indekser.
For å komme i gang, må vi tippe to verdier 0 1og x x . Prosessen gjentas til et
konvergenskriterium er oppfylt, f.eks. 1 2 eller x x x� �� � � � � . Kombineres

gjerne med 1 3()mf x �
�

� .

La oss bruke sekantmetoden til å finne den reelle rota av tredjegradpolynomet
3 2() 4 10f x x x� � � . (Et tredjegradspolynom med reelle koeffisienter har alltid

minst en reell rot). Figuren nedenfor viser polynomet tegnet for [0 , 2]x � .

0x

1x

2x 3x

0()f x

1()f x

2()f x

*x
�� �

�

� �

�

�

y

x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-10

-5

0

5

10

15
Funksjonen x3 + 4x2 -10

x

y

24

Vi ser at vi har et nullpunkt i intervallet [1.2 , 1.4] , og på en lommekalkulator
med nullpunktsløser finner vi nullpunktet * 1.365200134x � med 10 korrekte
siffer. La oss gjenta beregningen med bruk av sekantmetoden og bruker
startverdier 0 10 og 2x x� � .
I den første versjonen utfører vi iterasjonsprosessen et visst antall ganger uten å
spesifisere noe iterasjonkriterium. Dette er ofte lurt når vi begynner på et
problem der vi er usikker på iterasjonsforløpet.

Programmet sekant1 gir følgende resultat :

 m dx f(x) x
--
 1 -1.17e+000 1.40e+001 0.8333333333
 2 3.75e-001 -6.64e+000 1.2087912088
 3 2.11e-001 -2.39e+000 1.4196238401
 4 -5.87e-002 9.22e-001 1.3608992155
 5 4.22e-003 -7.14e-002 1.3651166138
 6 1.14e-004 -1.87e-003 1.3652302546
 7 -2.41e-007 3.98e-006 1.3652300134
 8 1.34e-011 -2.21e-010 1.3652300134

Vi ser at vi har fått 10 korrekte siffer etter 7 iterasjoner. Legg merke til at
prosessen går langsomt i begynnelsen; prosessen skyter fart først etter 6
iterasjoner. Det gjelder generelt både for Newton-Raphsons metode og
sekantmetoden at vi må være nær rota for å få rask konvergens.
Listingen av programmet er vist nedenfor.

% Program sekant1
clear
x0 = 0.0 ; x1 = 2.0; % Startverdier
f0 = func(x0);
mmax = 8;
s1 = '%2.0f % 7.2e % 7.2e %13.10f \n';
disp(' m dx f(x) x ')
disp('--')
for m = 1 : mmax
 f1 = func(x1);
 dx = - f1*(x1 - x0)/(f1 - f0);
 x = x1 + dx;
 fprintf(s1,m,dx,f1,x);
 x0 = x1;
 x1 = x;
 f0 = f1;
end

function y = func(x)
y = x^3 + 4*x^2 - 10;

25

Når vi nå vet at iterasjonsprosessen forløper greit, kan vi legge inn et
konvergenskriterium. Dette er gjort i versjonen sekant2 nedenfor.
(Se avsnittet Utskrift av tabeller angående fprintf)

% Program sekant2
x0 = 0.0 ; x1 = 2.0; % Startverdier
f0 = func(x0);
itmax = 10; epsi = 1.0e-7; it = 0; dx = 1;
while (abs(dx) >= epsi) & (it <= itmax)
 it = it + 1;
 f1 = func(x1);
 dx = - f1*(x1 - x0)/(f1 - f0);
 x = x1 + dx;
 x0 = x1;
 x1 = x;
 f0 = f1;
end
if (it > itmax)
 disp('*** Maks. antall iterasjoner ***')
end
fprintf('\n x = %13.10f \n',x);

FUNKSJON SOM INN-PARAMETER I EN FUNKSJON

Eksempel : Nullpunktsløsere

Anta at vi ønsker å lage en funksjon sekant som finner røtter av vilkårlige
funksjoner. I dette tilfellet ønsker vi å bruke navnet på funksjonen som vi skal
finne røttene av, som innparameter i sekant. Dette får vi til ved å bruke
kommandoen feval (function evaluation). Ved å bruke sekant2 som modell, kan
sekant skrives som følger :

function rot = sekant(fname,x0,x1,itmax,epsi)
f0 = feval(fname,x0);
it = 0; dx = 1;
while (abs(dx) >= epsi) & (it <= itmax)
 it = it + 1;
 f1 = feval(fname,x1);
 dx = - f1*(x1 - x0)/(f1 - f0);
 x = x1 + dx;
 x0 = x1;
 x1 = x;
 f0 = f1;
end
if (it > itmax)
 disp('*** Maks. antall iterasjoner ***')
end

26

Dersom vi bruker sekant på funksjonen func i det forrige eksemplet,får vi:

rot = sekant('func',x0,x1,itmax,epsi)

Legg merke til at istedenfor fname, setter vi inn det virkelige navnet på den
funksjonen som vi skal finne rota av. Denne er lagret som en m-fil med navn
func.m og må ligge på søkestien. Merk også apostrofene siden kommandoen
feval antar at fname er en streng.
Fra og med versjon 6.0 av Matlab anbefales det å bruke @ (krøllnabla) foran
funksjonsnavnet istedenfor å sette inn funksjonsnavnet som en streng. For
tilfellet ovenfor med den nye notasjonen :
 rot = sekant(@func,x0,x1,itmax,epsi)
Da denne nye standarden ikk er kompatibel med tidligere versjoner av Matlab,
velger vi å bruke den gamele måten med å angi navnet som en streng.

Det må nevnes at sekantmetoden i umodifisert versjon som vist ovenfor, ikke er
noen god nullpunktsløser i generelle tilfeller. Det er bedre å bruke Matlabs egen
nullpunktsløseren fzero. (Har kalkulatoren din en nullpunktsløser, er dette
vanligvis en variant av fzero).
La oss bruke fzero på funksjonen ovenfor. Anta først at vi ikke kjenner
noe intervall som inneholder nullpunktet, men vi har en anelse om at
nullpunktet ligger i nærheten av 1.0

» format long
» x0 = 1.0;
» rot = fzero('func',x0)
Zero found in the interval: [0.54745, 1.4525].

rot =
 1.36523001341410
»

fzero kan kalles på en rekke måter(skriv help fzero). Dersom vi kjenner et
intervall som rota ligger i, kan vi spesifisere dette.

» x0 = [1.2 1.4];
» rot = fzero('func',x0)
Zero found in the interval: [1.2, 1.4].
rot =
 1.36523001341410
»
Normalt vil den siste varianten være raskere. I begge tilfellene ovenfor har vi
funne rota med full presisjon, noe vi kan tillate oss i dette enkle tilfellet. For mer
kompliserte tilfeller kan dette være både tidkrevende og unødvendig. Anta at det
er tilstrekkelig med ca. 5 siffers nøyaktighet.

» x0 = [1.2 1.4];
» options = optimset('Tolx',1.0e-5);

27

» rot = fzero('func',x0,options)
Zero found in the interval: [1.2, 1.4].
rot =
 1.36523001552733
»
Vi ser at vi har fått adskillig mer enn 5 korrekte siffer. (Skriv help optimset
for å se den totale lista over opsjoner)

Eksempel : Bestemte integral

La oss lage en funksjon som integrerer en funksjon ()y f x� fra y a� til y b�

ved bruk av trapesmetoden. Deler intervallet [a , b] i n deler der hver del har

lengde
()b a

h
n

�

� . Med 1x a� og 1nx b
�
� blir (1) , 1,2,.., 1kx a h k k n� � � � � .

Fra figuren ovenfor får vi følgende uttrykk for arealet :

1 1 2 3

1 1 1 2 1

() (....)
2

() (....)
2

n n

n n

h
A y y h y y y

h
y y h y y y

�

� �

� � � � � �

� � � � � � �

La oss som et eksempel integrere sin(x). Funksjonen trapes1
gjør dette.

function intsin = trapes1(a,b,n)
h = (b-a)/n; % Intervall-lengde
np = n + 1 ; % Antall knutepunkt
s = 0;
for k = 2 : n
 x = a + (k-1)*h; y = sin(x);
 s = s + y*h;
end
intsin = s + h*(sin(a) + sin(b))*0.5;

Vi bruker trapes1 til å beregne
0

sin ()x dx
�

� = 2.

» a = 0; b = pi; n = 50;
» value = trapes1(a,b,n)
value =
 1.9993

Problemet med denne versjonen er at vi kan bruke den bare til å integrere sinus-
funksjonen. Dersom vi ønsker å integrere en annen funksjon, må vi gjøre en
forandring i programmet. Bruker derfor kommandoen feval som vi brukte i
programmet sekant til å sette funksjonsnavnet i parameterlista. Benytter
samtidig anledningen til å gjøre trapes1 mer effektiv ved å beregne alle

28

funksjonsverdiene før vi går inn i summasjonsløkka. Bruker dessuten den
innebygde kommandoen sum. Den nye versjonen er vist nedenfor.

function trapint = trapes2(fname,a,b,n)
% Integrerer en funksjon med bruk av trapesmetoden
h = (b-a)/n; % Intervall-lengde
np = n + 1 ; % Antall knutepunkt
x = linspace(a,b,np); % Knutepunktsverdier
y = feval(fname,x); % Funksjonsverdier
s = h*sum(y);
trapint = s - h*(y(1) + y(np))*0.5;

fname er navnet (på funksjonen som skal integreres.

Vi gjentar beregningen som vi gjorde ovenfor :
» a = 0; b = pi; n = 50;
» value = trapes2('sin',a,b,n)
value =
 1.9993

La oss deretter bruke trapes2 på funksjonen som vi har brukt under
nullpunkts-eksemplene:

function y = func(x)
y = x.^3 + 4.*x.^2 - 10;

La oss integrere denne mellom x = 1 og x = 2 der det analytiske resultatet er
37

3.08333...
12

� . Legg merke til at trapes2 må ha alle funksjonsverdiene samlet i

en vektor. Derfor må vi nå bruke elementvise operatorer i func.

» a = 1.0; b = 2.0; n = 50;
» value = trapes2('func', a, b, n)
value =
3.0839

Vi gjentar at fra og med versjon 6.0 av Matlab anbefales det å bruke
@ (krøllnabla) foran funksjonsnavnet istedenfor å sette inn funksjonsnavnet
som en streng. For tilfellet ovenfor : value = trapes2(@func, a, b, n)

Eksemplene ovenfor er ment å vise programmering i Matlab. Når en gitt
funksjon skal integreres, velger vi heller å bruke metodene som er innebygget i
Matlab, f.eks quad og quadl.

29

Ordinære differensialligninger. ODE45

I lefsa ODE ser vi på litt avansert bruk av odeløsere i Matlab. La oss her se på
enkel bruk av ode45 som på mange måter er arbeidshesten blant odeløserne i
Matlab. Som eksempel bruker vi en ikke-lineær svingeligning med dempning.

2

2

d z dz dz
z

dt d t d t
�

� �
� � � �� �

	

(1)

Startbetingelser : (0) , (0) 0
dz

z h
dt

� � (b)

(1) skrevet som system :

()

(0) , (0) 0

dz
v

dt
dv

z v v
dt
z h v

�

�

� � � �

� �

(2)

Når vi skal bruke ode45 eller de andre løserne i Matlab, må (2) kodes som en
Matlab-funksjon og legges i en egen m-fil. Istedenfor z og v bruker vi nå en
vektor y med 2 elementer. Setter z = y(1) og v = y(2) slik at systemet i (2) blir :

(1)
(2)

(2)
((1) (2) (2))

(1)(0) , (2)(0) 0

dy
y

dt
dy

y y y
dt

y h y

�

�

� � � �

� �

(3)

I den videre beregningen setter vi 0.07 og 8h� � � (b)

(3) skrevet i Matlab kan f.eks se slik ut :

function dydt = fcn(t,y)
dydt = zeros(2,1)
dydt(1) = y(2);
dydt(2) = -0.07*(y(1) + y(2)*abs(y(2));

Noen kommentarer : Denne funksjonen heter fcn med argumenter t og y . Når
funksjonen blir kalt, returnerer den med de deriverte i vektoren dydt. Navnene
dydt, fcn , t og y kan velges fritt. Merk at vi har spesifisert dydt som en kolonne-
vektor. (Bruk help ode45 i Matlab). Denne funksjonen legges i en egen m-fil.
Anbefaler å bruke samme navn på fila og funksjonen slik at navnet på fila
i dette tilfellet blir fcn.m.
La oss så skrive første versjon av programmet. Bestemmer oss for å plotte z og v
som funksjon av t opptil t = 70s.

30

% Program versjon1
% Bruker ode45
clear
y0 = [8 ; 0]; % Startverdier
tintervall = [0 70.0];
[t,y] = ode45('fcn',tintervall,y0);

% Plotter z og v som funksjon av t
plot(t,y(:,1),t,y(:,2),'-.');

Når programmet uføres, får vi følgende plott :

La oss se nærmere på programmet. Anbefaler å starte all programmer med
kommandoen clear. Denne nullstiller alle variable (Unntaket er variable definert
med kommandoen global. Disse må nullstilles fra kommando-vinduet.). Deretter
setter vi startverdiene i kolonne-vektoren y0. (Alternativ: y0 = [8 0]' som
transponerer linjevektoren til en kolonnevektor). Tidsintervallet angis i
linjevektoren tintervall. Det første tallet angir startverdien og det siste
sluttverdien. Deretter kalles ode45. Strengen 'fcn' angir egentlig navnet på m-
fila og ikke funksjonen. Derfor er det om tidligere nevnt lurt å bruke samme
navn på fil og funksjon. (Fra versjon 6.0 av Matlab, anbefales @fcn som nevnt
tidligere). Resultatet av kallet er en vektor t og en matrise y. Vektoren t
inneholder alle tidene som ode45 har funnet løsning for. Lengden kan finnes ved
å bruke kommandoen length(t) eventuellt size(t). I dette tilfellet finner vi
length(t) = 117. (Se kommentar angående parameteren Refine i lefsa ODE).
Første kolonne av matrisa y inneholder z-verdiene (antall 117) og den andre
kolonna v-verdiene. (De deriverte av første kolonne). Vi er så klar til å plotte.
Når vi skriver t, y(:,1), plottes t langs den horisontale aksen og z langs den
vertikale. Merk at y(:,1) betyr 1. kolonne der kolonet henviser til alle elementene.
Deretter plotter vi hastigheten v i samme figuren ved å skrive t, y(:,2) der 2

0 10 20 30 40 50 60 70
-6

-4

-2

0

2

4

6

8

31

henviser til den andre kolonnen som inneholder hastighetene. Tilslutt har vi lagt
til strengen '–.' Dette har vi gjort for at den siste kurven skal tegnes med
strekpunktert linje istedenfor heltrukket. Plotting er behandlet mer detaljert
senere. (Skriv help plot for flere muligheter)

Versjon 2

Vi skal nå i tillegg skrive tabell for z og v. Tabellen skal gå til 13s da vi ser av
plottet at dette tilsvarer noenlunde maks. negativ z-amplityde (0v �)

% Program versjon2
% Dette er versjon1 med tillegg av tabeller
% Bruker ode45
clear
y0 = [8; 0]; % Startverdier
tintervall = [0 70.0];
[t,y] = ode45('fcn',tintervall,y0);

% Plotter z og v = dz/dt som funksjon av t
plot(t,y(:,1),t,y(:,2),'-.');

% Tabeller for z og v opptil 13s
options = odeset('RelTol',1.0e-5);
y0 = [6; 0]; % Startverdier
tintervall = [0 : 1 : 13];
[t,y] = ode45('fcn',tintervall,y0,options);
fprintf(' %5.1f %13.4e %13.4e \n',[t y]');

 0.0 8.0000e+000 0.0000e+000
 1.0 7.7234e+000 -5.4642e-001
 2.0 6.9327e+000 -1.0171e+000
 3.0 5.7320e+000 -1.3607e+000
 4.0 4.2598e+000 -1.5597e+000
 5.0 2.6582e+000 -1.6226e+000
 6.0 1.0526e+000 -1.5717e+000
 7.0 -4.5573e-001 -1.4324e+000
 8.0 -1.7903e+000 -1.2276e+000
 9.0 -2.8955e+000 -9.7630e-001
 10.0 -3.7324e+000 -6.9318e-001
 11.0 -4.2752e+000 -3.8998e-001
 12.0 -4.5089e+000 -7.6313e-002
 13.0 -4.4276e+000 2.3733e-001

32

La oss se nærmere på siste delen av dette programmet. Vi har nå tatt med en
linje options = odeset('RelTol',1.0e-5). RelTol er den relative nøyaktigheten vi
ønsker. I plottedelen av programmet satte vi ikke RelTol. I ode45 settes da
RelTol = 1.0e-3. Dette er ofte godt nok for plotting. (Se lefsa ODE for flere
detaljer). Vi ønsker utskrift for hvert sekund. Derfor skriver vi
tintervall = [0 : 1: 13] (eventuellt [0 : 13]) som er en linjevektor med 14 elementer:
0, 1,2,…13. Merk at t-vektoren nå bare består av disse 14 verdiene. (Under
beregningen brukes om nødvendig flere). I kallet av ode45 legges parameteren
options etter startvektoren y0. For å få pen utskrift, bruker vi format-
kommandoer. (Flere detaljer under avsnittet Utskrift av tabellert i lefsa).
Konstruksjonen [t y] gir en matrise med tre kolonner der første kolonne er t-
vektoren osv. Når vi bruker formatkommandoer, skrives en matrise ut kolonne
for kolonne. Det vi ønsker er å skrive ut matrisa linje for linje. For å få til dette,
må vi transponere matrisa ved å skrive [t y]' . Nå blir kolonnene linjer og linjene
kolonner.

UTSKRIFT AV TABELLER

Når vi skriver til skjerm , papir eller en annen fil, bruker vi kommandoene disp,
fprintf og sprintf. disp og fprintf sørger for utskrift mens sprintf lager en
utskriftstreng som så kan skrives ut med fprintf og disp.

Syntaks :

disp(streng og/eller variable)
sprintf (<Streng med format specifikasjoner>, <Liste av variable>)

Syntaksen for fprintf er som for sprintf, men i tillegg kan det spesifiseres at det
skal skrives til en fil.

Et format ser ut som følger : % mW.PF
Tegnet % angir starten av et format og må alltid være med. m er en
markør som kan ha følgende verdier (kan utelates):

minus tegn (–) Venstrejusterer tallet. Ellers høyrejustert
+ Skriv alltid tallets fortegn (pluss eller minus)
0 Utfyll tallet med ledende nuller isteden for mellomrom

W angir antall plasser som er avsatt til tallet. (Kan utelates). P angir antall
desimaler etter desimalpunktum (presisjonen). (Kan utelates).
F er formatbeskriver.(Må være med). En liste over verdier for F er gitt nedenfor

33

F Beskrivelse

c Et enkelt tegn

d Heltall med fortegn

e Eksponentform (liten e)

E Eksponentform (stor E)

f Desimaltall

g Kompakt versjon av f eller g

G Som ovenfor, men med stor G

o Oktalt tall (uten fortegn)

s Streng av tegn

u Heltall uten fortegn

x Heksadesimalt tall(småbokstaver)

X Som ovenfor , men med store bokstaver

La oss se på et eksempel der vi skriver en tabell over feilfunksjonen erf(x) og
den komplementære feilfunksjonen erfc(x) = 1 - erf(x) for 0 2x� �

x = [0 : 0.25 : 2.0]';
y1 = erf(x);
y2 = erfc(x);
disp(' x erf(x) erfc(x)')
disp(' -----------------------------')
disp([x y1 y2]);

som gir utskrift :
 x erf(x) erfc(x)

 0 0 1.0000
 0.2500 0.2763 0.7237
 0.5000 0.5205 0.4795
 0.7500 0.7112 0.2888
 1.0000 0.8427 0.1573
 1.2500 0.9229 0.0771
 1.5000 0.9661 0.0339
 1.7500 0.9867 0.0133
 2.0000 0.9953 0.0047

34

Legg merke til at x er generert som en kolonnevektor slik at også y1 og y2 blir
kolonnevektorer. Deretter bruker vi disp til å lage tabell-overskrift. Ber deretter
om utskrift av matrisa [x y1 y2]. Merk at matrisa skrives ut linje for linje slik
som vi ønsker. Tallene i tabellen blir utskrevet med den valgte versjonen av
kommandoen format. I dette tilfellet er dette short som gir 4 desimaler.
Dersom vi hadde valgt format long , ville vi fått utskrift med 14 siffer for alle
kolonnene. Vi ser derfor at vi ikke kan velge forskjellig format for de enkelte
kolonnene med ensidig bruk av disp. Kombinerer derfor disp med sprintf.

x = [0 : 0.25 : 2.0]';
y1 = erf(x);
y2 = erfc(x);
disp(' x erf(x) erfc(x)')
disp(' -------------------------------');
disp(sprintf(' %5.2f %7.4f %12.4e \n',[x y1 y2]'));

 x erf(x) erfc(x)

 0.00 0.0000 1.0000e+000
 0.25 0.2763 7.2367e-001
 0.50 0.5205 4.7950e-001
 0.75 0.7112 2.8884e-001
 1.00 0.8427 1.5730e-001
 1.25 0.9229 7.7100e-002
 1.50 0.9661 3.3895e-002
 1.75 0.9867 1.3328e-002
 2.00 0.9953 4.6777e-003

I sprintf har vi nå skrevet en streng som inneholder formatteringskoder. Disse
starter som vi vet med %. Strengen avsluttes med \n som betyr ny linje. Hadde
vi utelatt \n , ville hele matrisa blitt skrevet på en linje. Legg merke til at vi har
transponert matrisa [x y1 y2]. Når vi bruker formatteringskoder, skrives en
matrise ut kolonne for kolonne; ikke linje for linje som vi ønsker. Derfor må
matrisa transponeres. Dette er ikke nødvendig når vi bare bruker disp, som i det
forrige eksemplet.

I stedenfor disp og sprintf, kan vi her greie oss med fprintf alene som vist
nedenfor.

35

x = [0 : 0.25 : 2.0]';
y1 = erf(x);
y2 = erfc(x);
fprintf(' x erf(x) erfc(x)\n');
fprintf(' -------------------------------\n');
fprintf(' %5.2f %7.4f %12.4e \n',[x y1 y2]');

 x erf(x) erfc(x)

 0.00 0.0000 1.0000e+000
 0.25 0.2763 7.2367e-001
 0.50 0.5205 4.7950e-001
 0.75 0.7112 2.8884e-001
 1.00 0.8427 1.5730e-001
 1.25 0.9229 7.7100e-002
 1.50 0.9661 3.3895e-002
 1.75 0.9867 1.3328e-002
 2.00 0.9953 4.6777e-003

sprintf er nyttig når formatteringsstrengene blir lange samt i forbindelse med
tekst på plott.

PLOTTING

La oss plotte feilfunksjonene i det forrige eksemplet.

» x = 0 : 0.1 : 2;
» y1 = erf(x);
» y2 = erfc(x);
» plot (x,y1,x,y2);

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

36

Den første vektoren plottes langs x-aksen mens den andre plottes langs y-aksen.
I dette tilfellet har vi plottet to funksjoner i samme plottet. Dette kan vi gjøre
fordi begge har samme utstrekning langs både x- og y-aksen. I praksis har vi
bruk for å fortelle hva vi har plottet, samt å skille de to funksjonene fra
hverandre. Dette gjøres med title og legend samt plottesymboler.

1 % Program plotting
2 x = 0 : 0.1 :2;
3 y1 = erf(x);
4 y2 = erfc(x);
5 plot(x,y1,'k',x,y2,'k-.');
6 grid on
7 title('Feilfunksjonene erf(x) og erfc(x)','Fontweight','Bold')
8 xlabel('x','Fontweight','Bold')
9 ylabel('erf \rightarrow , erfc\rightarrow','Fontweight','Bold')
10 legend('erf','erfc')

Forklaring til det meste finnes ved bruk av help plot, men noen kommentarer
kan være nyttige. I linje 5 har vi brukt 'k' og 'k-.'. 'k' brukes for å angi at
plottefargen skal være svart. Uten denne vil plottefargen være blå for den første
kurva og grønn for den andre. (Spesielt den grønne vises dårlig på en gråtone -
printer). For den andre kurva bruker vi 'k-.' der - . angir strekpunktert linje.
I line 6 har vi spesifisert nett. Vi setter overskrifta i linje 7 og angir uthevet
skrift. I linje 8 og 9 setter vi tekst på aksene. Legg merke til \rightarrow som
ganske riktig blir en høyrepil på figuren. Det finnes en mengde symboler,
deriblant de greske bokstavene, som kan brukes på figuren. En liste over disse er

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Feilfunksjonene erf(x) og erfc(x)

x

er
f
�

 ,
 e

rf
c

�

erf
erfc

37

gitt i appendiks . I linje 10 setter vi tegnforklaring til kurvene (legend) der
erf(x) har heltrukket linje og erfc(x) har en strekpunktert. Denne boksen kan
flyttes rundt på figuren med musa. Dersom du har bruk for å sette annen tekst
på figuren, prøv help text og help gtext.
Ovenfor har vi tegnet begge kurvene samtidig ved å plotte dem i den samme plot-
setningen. Samme effekten kan vi få ved følgende sekvens :
plot(x,y1)
hold on
plot(x,y2)
hold off

 Vi bruker denne framgangsmåten dersom det skal plottes mange kurver på
samme figur , f. eks. i en iterasjonsprosess.
Vi kan også dele plottevinduet opp i delplot ved å bruke kommandoen
subplot. Eksempel : subplot(3,3,k) betyr at plottevinduet skal deles opp i en
3 3� matrise av delvindu og at det neste plottet skal plasseres i delvindu k.
Nummereringen av delplottene er som følger :

� � � � � �

� � � � � �

� � � � � �

1 2 3

4 5 6

7 8 9

Programmet nedenfor , hentet fra Van Loan[5], viser dette.

% Script File: Polygons
% Plots selected regular polygons.
close all
theta = linspace(0,2*pi,361);
c = cos(theta);
s = sin(theta);
k=0;
for sides = [3 4 5 6 8 10 12 18 24]
 stride = 360/sides;
 k=k+1;
 subplot(3,3,k)
 plot(c(1:stride:361),s(1:stride:361))
 axis([-1.2 1.2 -1.2 1.2])
 axis equal
end

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

38

BANDMATRISER

TRIDIAGONALE MATRISER

Bruker ligning (2.3.16) i kompendiet som eksempel.

() 2 () 0y x xy x�� �� � (1)
med randbetingelser : (0) 0 , () 1y y x

�
� �

(Mer nøyaktig randbetingelse : 1 for y x� ��).
Med den mer nøyaktige randbetingelsen har (1) løsningen () er f ()y x x� .

Diskretisering

Med henvisning til figuren, får vi :

 , 0,1,..., 1 der
1i

x
x h i i N h

N
�

� � � � �

�

(2)

Diskretisering med sentraldifferanser vil gi en ligningsystem med tridiagonal
koeffisientmatrise :

1 1 1 1

2 2 2 2 2

1 1 1 1 1

.

.

.

N N N N N

N N N N

b c x d

a b c x d

a b c x d

a b x d
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� �� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

(3)

Ved bruk av sentraldifferanser i (1) samt bruk av (2) :

1 1 1 1
2

2
2 0

2
i i i i iy y y y y

h i
h h

� � � �
� � �� �

� � � �� �
	

som ordnet gir :

0 1 2 N+1Ni

0.0

x
x
�

39

2 2
1 1(1) 2 (1) 0i i ih i y y h i y

� �
� � � � � � � (4)

Skriver ut (4) for i = 1:
2

1 2 02 (1) 0 da 0y h y y� � � � � fra (1b)

Skriver ut (4) for i = N :

2 2
1 1(1)) 2 (1) da 1n N Nh N y y h N y

� �
� � � � � � fra (1b)

Totalt har vi da fått disse uttrykkene for diagonalene :

2

2

2

2 , 1,2,..., , 1 , 2,3,..,

1 , 1,2,.., 1

0 , 1,2,.., 1 , (1)

i i

i

i N

b i N a h i i N

c h i i N

d i N d h N

� � � � � � �

� � � � �

� � � � � �

(5)

Matlab-programmet nedenfor viser fremgangsmåten der vi bruker subrutina
tdma til å løse ligningsystemet i (5).

%============= Program triv1 ==============
clear
xmax = 4.0;
h = 0.05; % skrittlengde
ni = round(xmax/h) ; %Antall intervall
xmax = ni*h; % For sikkerhets skyld
neq = ni - 1 ; % Antall ligninger
%--- Initialisering(kolonnevektorer)
b = -2*ones(neq,1);
c = zeros(neq,1);
d = c; a = c ;
% --- Genererer over-og under-diagonaler
for k = 1:neq
 fac = k*h^2;
 a(k) = 1 - fac;
 c(k) = 1 + fac;
end
d(neq) = -(1 + fac);
%-----------------------
% Løser ligningsystemet
%-----------------------
y = tdma(a,b,c,d);
y = [0;y ; 1];
%---- Utskrift av y ----
x = [0 :h: xmax]'; % Som kolonnevektor
ya = erf(x); % Analytisk løsning
fprintf('\n x y ya \n\n')
fprintf(' %7.3f %10.5f %10.5f \n',[x y ya]');

40

Vektorisering

Matlab er laget for å operere raskt på vektorer uten bruk av løkker. For
eksempel er operasjonen y = x raskere enn
for k = 1: n
 y(k) = x(k);
end
Denne teknikken kan utvides til bruk av indeksvektorer. Eksemplet ovenfor kan
også skrives :
k = 1:n; % Indeksvektor
y(k) = x(k);
Indeksvektoren k går gjennom alle verdiene fra 1 til n slik at effekten blir som i
tilfellet y = x . Vi kan også bruke indeksvektoren på deler av vektoren. Merk at
indeksvektoren k også krever lagerplass etter at operasjonen er fullført. Går vi
tilbake til løkka i triv1, kan vi generere diagonalen a og c ved å bruke en
indeksvektor :

k = 1: neq; % Indeksvektor
a(k) = 1 - k*h^2;
c(k) = 1 + k*h^2;

Denne versjonen er ca. 25 ganger raskere enn løkka. Generelt er bruk av
indeksvektor mye mer effektivt enn bruk av løkke. Når vi derimot ser på den
virkelige eksekveringstiden, føles kanskje ikke effekten så stor. Med neq =
40000 og en PC med 266MHz prosessor, bruker løkka 2.14s mens bruk av
indeksvektor krever 0.09s. Indeksvektoren trenger i dette tilfellet 312.5 KB
lagerplass.

GLISNE MATRISER I MATLAB

Med glisne matriser (eng: sparse matrices) mener vi matriser som har mange
null-elementer i forhold til totalt antall elementer. Bandmatriser er typiske.
Matlab har mange kommandoer for behandling av glisne matriser (bruk help
sparse), men vi skal begrense oss til kommandoen spdiags som bygger matriser
av diagonaler.
La oss se på et eksempel.

a = [1:5]';
A = spdiags([a a a],[-1 0 1], 5,5);
A = full(A)
A =
 1 2 0 0 0
 1 2 3 0 0
 0 2 3 4 0
 0 0 3 4 5
 0 0 0 4 5

41

Vi lager først en kolonne-vektor a med elementene 1 til 5. Denne vektoren
bruker vi til å lage en tridiagonal matrise [a a a]. spdiags nummererer
diagonalene på følgende måte: Hoveddiagonalen er 0, første overdiagonal er 1,
neste overdiagonal 2 osv. Første underdiagonal er -1, neste -2 osv. For en
tridiagonal matrise med en underdiagonal og en overdiagonal sammen med
hoveddiagonalen, markeres dette ved [-1 0 1]. Tilslutt gis størrelsen på den
totale matrisa; i vårt tilfelle 5 5� . Matrisa A blir lagra uten nullelementene. For
å kontrollere hva som lagres, går vi tilbake til en full matrise med kommandoen
A = full(A). (Bare ved små matriser, ellers forsvinner vitsen ved å bruke glisne
matriser. Bruk kommandoen spy(A) når du bare vil kontrollere
lagringsmønsteret). Legg merke til hvordan diagonalene lagres: Elementer med
samme indeks blir lagret i samme kolonne, ikke samme linje som vi bruker; se
lign. (3). For å gjøre dette helt klart, viser vi et eksempel med 5 ligninger:

Vår notasjon:
1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 5

5 5 5 5

0 0 0

0 0

0 0

0 0

0 0 0

b c x d

a b c x d

a b c x d

a b c x d

a b x d

� � � � � �
� � � � � �
� � � � � �
� � � � � �� �
� � � � � �
� � � � � �
� � � � � �� � � � � �

(6)

Lagring ved spdiags:
1 2 1 1

1 2 3 2 2

2 3 4 3 3

3 4 5 4 5

4 5 5 5

0 0 0

0 0

0 0

0 0

0 0 0

b C x d

A b C x d

A b C x d

A b C x d

A b x d

� � � � � �
� � � � � �
� � � � � �
� � � � � �� �
� � � � � �
� � � � � �
� � � � � �� � � � � �

(7)

Vi har brukt store bokstaver i (7) for å markere de elementene som har
forskjellig indeksering fra vår notasjon. Et program triv3, basert på bruk av
spdiags og indeksvektoriserng er vist nedenfor.

%======== Program triv3 Sparse-versjon =======
clear
xmax = 4.0;
h = 0.05; % skrittlengde
ni = round(xmax/h) ; %Antall intervall
xmax = ni*h; % For sikkerhets skyld
neq = ni - 1 ; % Antall ligninger
%--- Initialisering(kolonnevektorer)
b = -2*ones(neq,1);
c = zeros(neq,1); % overdiagonal
d = c; a = c ;
% Lager indeksvektor
J = 2:neq;

42

% --- Genererer over-og under-diagonaler
a(J-1) = 1 - J*h^2;
c(J) = 1 + (J-1)*h^2;
d(neq) = -(1 + neq*h^2);
%-----------------------
% Løser ligningsystemet
%-----------------------
A = spdiags([a b c], [-1 0 1],neq,neq);
y = A\d;
y = [0;y ; 1];
%---- Utskrift av y ----
x = [0 :h: xmax]'; %Som kolonnevektor
ya = erf(x); % Analytisk løsning
fprintf('\n x y ya \n\n')
fprintf(' %7.3f %10.5f %10.5f \n',[x y ya]');

Vi har her lagret diagonalene direkte, tilsvarende lign. (7). Men kommandoen
sparse nummererer også den tridiagonale matrise med standard matrise-
notasjon, slik at for et system med fem ligninger kan (3) også skrives :

11 12 1 1

21 22 23 2 2

32 33 34 3 3

43 44 45 4 4

54 55 5 5

a a x d

a a a x d

a a a x d

a a a x d

a a x d

� � � � � �
� � � � � �
� � � � � �
� � � � � �� �
� � � � � �
� � � � � �
� � � � � �� � � � � �

La oss vise dette :

a = (1:5)';
A = spdiags([a a a],[-1 0 1],5,5)

A =
 (1,1) 1
 (2,1) 1
 (1,2) 2
 (2,2) 2
 (3,2) 2
 (2,3) 3
 (3,3) 3
 (4,3) 3
 (3,4) 4
 (4,4) 4
 (5,4) 4
 (4,5) 5
 (5,5) 5

43

Legg merke til at null-elementene ikke lagres. Lign. (5) blir nå :

,

2
1 1,

2
, 1

2

2 , 1,2,..., ,

1 (1) , 1,2,.., 1

1 , 1,2,.., 1

0 , 1,2,.., 1 , (1)

i i i

i i i

i i i

i N

b a i N

a a h i i N

c a h i i N

d i N d h N

� �

�

� � � �

� � � � � � �

� � � � � �

� � � � � �

(8)

Merk at vi har brukt i = 1,2,..,N-1 også for a-vektoren slik at vi kan beregne a og
c i samme løkke.

Programmet blir som vist nedenfor :

%======== Program triv4 Sparse-versjon =======
clear
xmax = 4.0;
h = 0.1; % skrittlengde
ni = round(xmax/h) ; %Antall intervall
xmax = ni*h; % For sikkerhets skyld
neq = ni - 1 ; % Antall ligninger
%--- Initialisering. Lagrer temporært b i d og
%--- bruker b-vektoren til å lage A
d = -2*ones(neq,1); % Hoveddiagonal
A = spdiags([d d d], [-1 0 1],neq,neq);
% --- Genererer over-og under-diagonaler
for k = 1:neq -1
 A(k+1,k) = 1 - (k+1)*h^2; % Underdiagonal
 A(k,k+1) = 1 + k*h^2; % Overdiagonal
end
d(neq) = -(1 + neq*h^2);

y = A\d; %Løser ligningsystemet

y = [0;y ; 1];
%---- Utskrift av y ----
x = [0 :h: xmax]'; %Som kolonnevektor
ya = erf(x); % Analytisk løsning
fprintf('\n x y ya \n\n')
fprintf(' %7.3f %10.5f %10.5f \n',[x y ya]');

Legg merke til at vi ikke kan bruke indeksvektor i dette tilfellet. Vi har brukt
bare en vektor (høyresiden av systemet) til å generere matrisa slik at vi sparer
lagerplass ved å bruke denne versjonen.

44

Det ikke noen fordel å bruke spdiags og A\d sammenlignet med å bruke tdma for
løsning av et tridiagonalt ligningsystem. tdma er spesialskrevet for å behandle
tridiagonale system mens sparse behandler generelle glisne system. Antall
operasjoner i tdma er 2(neq -1) � 2neq slik at tidsforbruket er proposjonalt med
antall ligninger. Med en PC med 266Mhz prosessor, løser tdma et ligningsystem
med 4000 ukjente på 0.45s og bruker følgelig 4.5s på et system med 40000. Ved
å bruke sparse, trengs 8s for 4000 ligninger og hele 1457s (24 min og 17s) for et
system på 40000. Regnetiden her er proposjonal med mer enn kvadratet av
antall ligninger. Husk at tdma ikke utfører pivotering, noe som kan skape
problemer dersom systemet ikke er diagonal-dominert; se (lign. (3.1.4) i
kompendiet. I dette tilfellet kan tripiv brukes istedet. Regnetiden øker nå knapt
3 ganger (2.75) i forhold til tdma, men økningen er fremdeles proposjonal med
antall ligninger. Spesialskrevne løsere for bandmatriser er normalt betydelig
raskere enn de generelle løserne som er innbyggget i Matlab.

INNLESNING AV DATA (help iofun)

Den vanligste kommandoen er input som leser interaktivt .
Eksempel :

x = input('les x-verdi : ');

Skriver les x-verdi : på skjermen og venter på input fra brukeren.

Lese tabeller fra filer (help load)

Anta at vi har følgende tabell liggende på en fil med navn func.dat

0.00 0.0000
0.25 0.2763
0.50 0.5205
0.75 0.7112
1.00 0.8427
1.25 0.9229
1.50 0.9661
1.75 0.9867
2.00 0.9953

Følgende kommando leser tabellen inn i en 9 2� matrise :
load func.dat
Merk at matrisa får navnet func. Dersom fila func ikke har noen endelse
(extension) og du skriverload func antar Matlab at dette er en mat-fil som er
en fil på binær form. Du må da skriveload func -ascii for å få rett format.

45

APPENDIKS

Math Symbols

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

\leftarrow

\rightarrow

\uparrow

\downarrow

\Leftarrow

\Rightarrow

\Leftrightarrow

\partial

\neq

\geq

\approx

\equiv

\cong

\pm

\nabla

\angle

\in

\subset

\cup

\cap

\perp

\infty

\int

\times

Greek Symbols

�

�

�

�

�

�

�

!

\alpha

\beta

\gamma

\delta

\epsilon

\kappa

\lambda

\mu

\nu

"

#

$

%

&

'

(

)

*

\omega

\phi

\pi

\chi

\psi

\rho

\sigma

\tau

\upsilon

+

,

-

.

/

\Sigma

\Pi

\Lambda

\Omega

\Gamma

	FORORD
	INNLEDNING
	VARIABLE
	FILKOMMANDOER
	FUNKSJONER
	UTSKRIFT AV TABELLER
	BANDMATRISER
	TRIDIAGONALE MATRISER
	GLISNE MATRISER I MATLAB

	APPENDIKS

