FORORD

Denne lefsa er ikke ment som en laerebok, men gir en kortfattet innforing 1 de
mest brukte kommandoer og konstruksjoner 1 Matlab basert pa eksempler. Den
siste versjonen av Matlab er 6.1 som er innstallert pa datasalen. Denne lefsa
bruker ingen av de nye tingene som er introdusert 1 den siste versjonen.

MTF-NTNU Februar 2002

INNLEDNING

Matlab er et interaktiv program som er laget spesielt for tekniske og
vitenskapelige beregninger. Det ble opprinnelig skrevet av Cleve Moler 1 slutten
1 70-arene for a teste store Fortran programpakker i numerisk lineger algebra
som Linpack og Eispack. Programmet har siden utviklet seg sterk med blant
annet et eget programmeringsprak, sterk grafikk og objektprogrammering. I
tillegg faes spesialskrevne moduler innen en rekke fagomrader (Toolboxes)

Det finnes mye litteratur om Matlab og her skal vi bare nevne noen fa.
[1] A.Stremhylden og E. Wahl : Introduksjon til Matlab. Tilleggshefte til
Innforing i Informasjonsteknologi

Tapir 1999

[2] F. Haugen : Leer Matlab trinn for trinn
TechTeach 2001

[3] E.P. Enander & A. Sjoberg : Anvdandarhandledning for Matlabb
Uppsala Universitetet 1998

[4] Higham & Higham : Matlab Guide
SIAM 2000
[6] C.F. Van Loan : Introduction to Scientific Computing

Prentice-Hall , 2.utgave 2000

Referansene [4] og [5] inneholder Matlabprogrammer som kan lastes ned.
For liste over beker som bruker/omhandler Matlab :
www.mathworks.com/support/books

HJELPESYSTEM

Start med help help dersom du ikke vet hvordan hjelpesystemet brukes.
Istedenfor (eller i tillegg til) help kan vi bruke doc. Hjelpesystemet apner na et
eget vindu. doc gir vanligvis mer omfattende informasjon enn help.

Skriv help for a gi en liste over sskeemner :

» help
HELP topics:

matlab\general
matlab\ops
matlab\lang
matlab\elmat
matlab\elfun
matlab\specfun
matlab\matfun
matlab\datafun
matlab\audio
matlab\polyfun
matlab\funfun
matlab\sparfun
matlab\graph2d
matlab\graph3d
matlab\specgraph
matlab\graphics
matlab\uitools
matlab\strfun
matlab\iofun
matlab\timefun
matlab\datatypes
matlab\verctrl
matlab\winfun
(DDE/ActiveX)
matlab\demos
toolbox\local
MATLAB6pl1\work

General purpose commands.
Operators and special characters.
Programming language constructs.
Elementary matrices and matrix manipulation.
Elementary math functions.
Specialized math functions.
Matrix functions - numerical linear algebra.
Data analysis and Fourier transforms.
Audio support.

Interpolation and polynomials.

Function functions and ODE solvers.
Sparse matrices.

Two dimensional graphs.

Three dimensional graphs.

Specialized graphs.

Handle Graphics.

Graphical user interface tools.
Character strings.

File input/output.

Time and dates.

Data types and structures.

Version control.

Windows Operating System Interface Files

Examples and demonstrations.
Preferences.
(No table of contents file)

For more help on directory/topic, type "help topic".
For command syntax information, type "help syntax".

help general og help ops gir mange nyttige kommandoer

Lista viser at dersom vi f. eks ensker a vite hvilken elementaere matematiske
funksjoner som finnes, skriver vi help elfun.
En annen nyttig sskekommando er Tookfor. (skriv help Tookfor)

VARIABLE

Navn pa en variabel ma begynne med en bokstav, fulgt av en vilkarlig rekke av
bokstaver, tall og understrekningsymbolet (). Mellomrom er ikke tillatt. Bare de
31 forste tegnene er signifikante. Merk at Matlab skiller mellom store og sméa
bokstaver slik at f. eks. Pi og pi er to forskjellige variabler.

Spesielle symboler

[l Ved definisjon av matriser

() Indekser

" (To apostrofer). Markerer en streng

, (Komma): Skiller indekser eller matriseelementer

; (Semikolon): 1. Hindrer utskrift i kommandovinduet
2. Skiller linjer i matriser
3. Skiller programsetninger pa en linje

% Markerer begynnelsen pa en kommentar-setning

: Kolonoperator. Liste og matrise-generator

+ Addisjon

Subtraksjon

* Multiplikasjon

Elementvis multiplikasjon

(Hoyre) divisjon

Elementvis (hoyre) divisjon

Venstre divisjon

Eksponentiering

Elementvis eksponentiering

(Enkel apostrof) : Transponering

Tre prikker etterhverandre ved skriving i kommandovinduet angir

fortsettelse pa neste linje.

s> S T

Predefinerte variable

pi 3.141592...

i Imaginaer enhet, V-1
j Imaginaer enhet, V-1
eps Relativ noyaktighet, 2% ~ 2.22.107"°

realmin Minste flyttall, 2% ~ 2.23.107°%
realmax Storste flyttall. (2—-eps) 2% ~1.8-10°%

Inf Uendelig, eks 1/0
NaN Ikke-et-tall, eks 0/0

Disse variable er ikke beskyttet og kan redefineres. Far tilbake sine opprinnelige
verdier ved a bruke clear.

» clear pi
» pi
ans =
3.1416

Det er normalt ikke noen god ide a redefinere pi, mens i og j derimot brukes
ofte som indekser slik at det kan bli nedvendig & omdefinere disse. Generelt
bor en forseke 4 unnga redefinering.

FILKOMMANDOER

Nar vi er 1 kommando-vinduet, finnes det en rekke kommandoer vi kan bruke til
a gi liste over filer, hoppe fra en mappe til en annen osv. Alle disse operasjonene
kan selviolgelig gjores 1 Windows, men 1 enkelte tilfeller er det raskere a utfore
dem som kommandoer istedenfor 4 bruke musa. Mange av disse kommandoene
har ekvivalente kommandoer hentet fra det underliggende operativsystemet. Ved
a starte kommandolinja med et utropstegn, antar Matlab at det som folger er en
operativsystemkommando.

Liste over noen kommandoer : (skriv help general)

what Gir en liste over M-filer 1 den mappa du er 1

dir Gir liste over filer og mapper 1 den mappa du er i

cd brukes til 4 hoppe fra en mappe til en annen

copyfile Kopierer innholdet av en fil til en annen. Dersom den andre fila

ikke eksistere, blir den opprettet. Flytter ogsa filer fra en mappe
til en annen.

delete Sletter filer

mkdir Lag en ny mappe.

Nedenfor er vist en seanse der vi bruker noen av disse kommandoene.
Bruk help til 4 finne den neyaktige syntaksen for hver av kommandoene.

» dir

. Blasius Eks193 Falkner Kap2 tull.m @ving3
» what
M-files in the current directory c:\myfiles\matlabprog\siol@54
tull

» mkdir test
» copyfile tull.m test

» cd test
» dir
. tull.m
» delete tull.m
» cd ..
» dir
. Blasius Eks193 Falkner Kap2 test tull.m @ving3

Merk : en prikk er en forkortelse for navnet til den mappa du er 1, mens to
prikker er en forkortelse for den overliggende mappa (parent directory)

Vi nevnte ovenfor at dersom du setter et utropstegn foran en kommando,
oppfattes dette som kall av en systemkommando.(Se forskjellen pa

dir og !dir). Den forste er en Matlab-kommando mens den siste er en Windows-
kommando. Dersom du ensker & depe om en fil, kan du bruke Windows-
kommandoen ren: !ren minfil.m dinfil.m som deper om filen minfil.m til
dinfil.m.

Dersom du eksempelvis ensker 4 omdepe alle filene som ender pa for til filer
som ender pa m, kan dette gjores enkelt ved : !'ren *.for *.m

MATRISER OG VEKTORER

Skriver inn en 3x3 matrise. Semikolon angir slutt pa hver matriselinje.

»A=1[123; 456; 7 8 9]

A =
1 2 3
4 5 6
7 8 9

Kan plukke ut hoveddiagonalen ved :

»diag(A)
ans =

1

5

9

diag kan brukes til 4 plukke ut andre diagonaler (Se help diag)
Linjevektor :

»a = [10 11 12]

a =

10 11 12

Kolonnevektor :

»b = [13; 14 ;15]
b =

13

14

15

Far en kolonnevektor ved & transponere en linjevektor :

» a'

ans =
10
11
12

Far en linjevektor ved a transponere en kolonnevektor :
» b'
ans =

13 14 15

Ved a transponere A bytter vi om linjer og kolonner

» A =A"'

A =
1 4 7
2 5 8
3 6 9

Velger ut den forste kolonna 1 A :

» a = A(:,1)
a:

1

2

3

Velger ut den forste linja i A

» b = A(1,:)
b =
1 4 7

Velger det siste elementet 1 den forste kolonna 1 A:
» A(end,1)

ans =
3

Velger det siste elementet 1 den tredje kolonna i A:

» A(end,3)
ans =
9
» b =0b"
b —
1
4
7

Lager en ny B matrise ved a sette sammen to kolonnevektorer :

» B = [a b]
B =
1 1
2 4
3 7

Lager en ny C matrise ved 4 sette sammen de to matrisene A og B

» C = [A B]

C =
1 4 7 1 1
2 5 8 2 4
3 6 9 3 7

Finner antall elementer 1 vektoren b:

» length(b)
ans =
3

Finner dimensjonene av matrisa C:
» size(C)
ans =
3 5
Lager en linjevektor av elementene 2,3,4 1 forste linje av C:
» d = C(1,2:4)
d =
4 7 1

Lager en kolonne-vektor av elementene 1,2 i forste kolonne av C:

»d=20(1:2,1)

Setter d lik siste kolonne 1 C:

» d = C(:,3)
d =

7

8

9

Adderer et element til begynnelsen og slutten av d . Merk at
Matlab eker dimensjonene dynamisk:

» d=1[0;d;0]
d =

]

7

8

9

]

Merk at vi kan addere en skalar direkte til en vektor selv om dette strengt tatt
ikke er en tillatt vektor-operasjon

» b =d +1
b =

& OO0

Vi har ogsa tomme matriser. Disse markeres med [] (to hakeparenteser).
Kan f.eks brukes til a fjerne en kolonne eller linje fra en matrise.

»A
A =
1 4 7
2 5 8
3 6 9
» A(C:,3) =[]
A =
1 4
2 5

AUTOMATISK GENERERING AV VEKTORER OG MATRISER.

Kan bruke kolonnotasjon i:j:k der i = startverdi, j = inkrement og k =
sluttverdi. Dersom inkrementet utelates, antas inkrement = 1

» a = [1:5]
a =
1 2 3 4 5

»a=1[1 :6.5 : 3]

1.0000 1.5000 2.0000 2.5000 3.0000

Kan bruke vanlige parenteser eller helt utelate parenteser for linjevektorer :

»a=1:0.1:1.5
a =
1.0000 1.1000 1.2000 1.3000 1.4000 1.5000
» b=7:-1:1
b =
7 6 5 4 3 2 1

Kan ogsa bruke linspace:

» d = linspace(1,2,4)
d =
1.0000 1.3333 1.6667 2.0000

Syntaks : Tinspace(venstre endepunkt, heyre endepunkt, antall punkt)
Dette betyr at 1inspace genererer n ekvidistante punkt der d(1) = a
og d(n) = b . Dersom antall punkt utelates, velges 100. (Se ogsa Togspace)

De folgende kommandoene brukes ofte til 4 initialisere vektorer og matriser

» a = zeros(5,1)
a =

(SIS RS RS RS}

»

o

= ones(1,5)

10

1 1 1 1 1
» D = eye(3)
D =

1 1]]

] 1]

1]] 1

Her er et eksempel pa bruk av indeksvektor. Merk at a blir en kolonnevektor
fordi vi har brukt a = zeros(5,1) ovenfor. Om indeksvektoren er kolonne- eller
linjevektor betyr ikke noe 1 dette tilfellet.

» j =1:5

(]

1 2 3 4 5

» a(j) = j*@.1
a =
0.1000
0.2000
0.3000
0.4000
0.5000

Indeksvektorer brukes ogsa til sakalt indirekte addressering.

Il -

»a = a';
» v(1)
» vV

V =

1; v(2) = 5; v(3) = 2;

» b = a(v)
0.1000 0.5000 0.2000
Elementvise operasjoner

» X = linspace(pi/3,pi,6)
X

1.0472 1.4661 1.8850 2.3038 2.7227 3.1416
» Yy = X.*X

1.0966 2.1494 3.5531 5.3077 7.4132 9.8696
» Yy = sin(x).*x

@.9069 1.4580 1.7927 1.7121 1.1074 0.0000

11

» y = sin(x)./x
y =
0.8270 0.6784 @.5046 0.3226 0.1494 0.0000
» Yy = sin(x).”2
y =

@.7500 0.9891 @.9045 @.5523 0.1654 0.0000

Tilslutt sorterer viy:
» y = sort(y)
y =

0.0000 @.1654 @.5523 0.7500 0.9045 0.9891
Her er flere mater & beregne skalarproduktet pa
» Yy = sum(x.*x)
y =

29.3895

= X'*X

v
I <

Y
29.3895

» y = dot(x,x)
y =
29.3895

LOSNING AV LIGNINGSYSTEM

Vi skal lgse systemet A-Xx =b. Lesningen kan skrives symbolsk

ved x = A'.b. Det er mulig & beregne den inverse av A-matrisa og deretter
multiplisere med b, men dette er ineffektivt. Lesning av ligningsystemet 1
Matlab skrives x = A\b der b er en kolonnevektor. Operatoren \ kalles venstre
divisjon (heller mot matrisa som skal «divideres» pa ; symbolsk kan A™
oppfattes som divisjon.

Merk at b/A ikke er definert. Derimot kan vi beregne b'/A der

b'/A = b'*inv(A). (Husk at herer b' en linjevektor)

Eksempel 1

» A =1[-33/2 @; 3/4 -9/4 5/4; @ 5/6 -19/9]
A =
-3.0000 1.5000]
@.7500 -2.2500 1.2500
@ 3.8333 -2.1111

12

(o
1l

» [1/2 1 3/2]"
0.5000
1.0000
1.5000

» X = A\b

-0.8952
-1.4571
-1.2857

» format rat
» X
X:
-94/10@5
-51/35
-9/7

Da matriseelementene her er rasjonale tall, kan vi fa lesningen pa pen brekform.
Dette gjores ved a forandre utskriftsformatet for kommando-vinduet fra format
til format rat. Gar deretter tilbake til format short (Se help format)

» format
Eksempel 2

A =
0.4096 0.1234 0.3678 @.2943
@.2246 @.3872 @.4015 @.1129
@.3645 0.1920 0.3728 0.0643
@.1784 @.4002 @.2786 @.3927

0.4043
@.1550
0.4240
-0.2557

>> x = A\b

X:
-0.0061
-1.5556
2.0315
-0.5043

13

PROGRAMMERINGSDEL

Til na har vi sett pa bruk av Matlab som kalkulator. De konstruksjonene og
kommandoene som folger her, blir vanligvis brukt i program selvom de ogsa kan
skrives direkte 1 kommandovinduet. Programmene skrives med en tekst-editor
Den innebygde editoren er vanligvis god nok, da Matlabprogrammene normalt er
sma. Er det behov for en mer sofistikert editor, finnes TextPad ved NTNU.
Programmene blir lagt 1 filer med endelse m. Kalles derfor M-filer. Eks. : Prog.m
Har to typer M-filer: Skript M-filer, ogsa kalt kommando-filer samt funksjons M-
filer som inneholder en funksjonsdefinisjon.

LOGISKE UTTRYKK

Matlab har ikke logiske variable. Alle logiske uttrykk far verdien 1 eller O der
sant = 1 og usant = 0.

Sammenligningsoperatorer (Skriv help/doc ops)

< mindre enn

<= mindre eller lik
== ik

>= storre eller lik
> storre enn

~= ikke lik (ulik, forskjellig)

Naraogbertall, blira == b, a > b , a ~= b eksempler pa logiske uttrykk.
Logiske operatorer (Skriv help ops)

& bade og (and)

| enten eller (or)

Xor eksklusiv eller(exclusive or)

~ negasjon (not)

I tillegg har vi any og all

Husk at sant = 1 og usant = 0. La A og B vaere to logiske
uttrykk.Sannhetstabellen nedenfor viser verdiene ved bruk av operatorene.

and or xor not
A B A&B A|B xor(A,B) ~A
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 0

14

Eksempler
a=1,b=2,¢c=3,d=14

»y = (a<=1)| (c>a)
y =1

»y=(a>1)& (d >b)

Y

<

]

»y=(a==1)& (d ~=b)

<
1]

1

»y =xor((a==1), (d ~=b))

<
|

7}
De logiske uttrykkene brukes ved forgreininger og lokker.
FORGREININGER
Kommandoer: if, else, elseif . (Dessuten kommandoen switch)
Variant 1
if logisk uttrykk
setninger

end

Setninger utfores bare dersom det logiske uttrykket = sant.
Eksemplet kan ogsa skrives pa en linje:

if, logisk uttrykk, setninger, end
Denne siste formen kan lett bli uoversiktelig.
Variant 2

if logisk utrykk
setningerl
else
setninger2
end
setningerl utfores dersom det logiske uttrykket = sant ellers
utfores setninger?2.

15

Variant 3

if logisk utrykkl

setningerl
elseif logisk uttrykk2

setninger2
else

setningers
end

setningerl utfores bare dersom logisk uttrykkl = sant. setningerl og 2 blir da
ikke utfort. Dersom logisk uttrykkl = usant utferes bare setninger 2 dersom
logisk uttrykk2 = sant. Dersom bade logisk uttrykkl og 2 = usant utfores
setningers3 (og bare da).

Ved bruk av sammenligningsoperatorer kan de variable veere vektorer og
matriser. La x og y veere vektorer med n komponenter. Da vil if x < y bare veere
sant dersom x, <y, , i = 1,2, .. n.Tilsvarende for matriser.

Et eksempel der vi kan bruke konstruksjonen fra variant 3

Anta at vi skal regne om tallkarakterer til bokstavkarakterer og folgende
relasjoner er gitt :

[1.0-1.75]= A, (1.75-2.25]= B , (2.25-2.75] = C
(2.75-3.25]= D , (3.25-4.25] = E , > 4.25 = F (stryk)

Som Matlab-kode :

if (tallk <= 1.75)

disp ('Karakter er A');
elseif (tallk <= 2.25)

disp ('Karakter er B');
elseif (tallk <= 2.75)

disp ('Karakter er C');
elseif (tallk <= 3.25)

disp ('Karakter er D');
elseif (tallk <= 4.25)

disp ('Karakter er E');
else

disp ('Karakter er F (stryk)');

end

Merk at parentesen rundt f.eks (tallk < 1.75) ikke behoves.

16

ITERASJONSLOKKER
Matlab har to kommandoer, for og while, for gjentatt utferelse av setninger.
Den generelle syntaksen for en for- lokke er :
for variabel = uttrykk
setninger

end

variabel er navnet pa lekke-variabelen (Legkka kan, om enskelig, skrives pa en
linje).

Eksempel
>> for k = [1 2.5 3 4.5]
x= k"2
end
X =
1
X =
6.2500
X =
9
X =
20.2500
>>

Her er uttrykk en vektor slik at lekkevariabelen k forlepende gar gjennom
verdiene i vektoren.

Det vanligste er at utirykk tilordner en startverdi, en inkrement-verdi og en
sluttverdi til lokke-variabelen. Inkrementet kan vaere bade positivt og negativ
eller det kan utelates. I det siste tilfellet antas 1 som inkrement-verdi. Vanligvis
brukes kolonnotasjonen til a definere lokke-variabelen. Vi kan ha flere lokker
inne 1 hverandre :

for variabell = uttrykkl

setningerl
for variabel2 = uttrykk2
setninger2
end
end
Eksempel

» A = zeros(4);
» for k = 1:3
ACk,k)

= 4;
ACk,k+1) =

1;

17

ACk+1l,k) = 1;
end

» A(4,4) = 4;

» A

A =
4 1 @ @
1 4 1 @
@ 1 4 1
@ @ 1 4

Kommandoen while utferer setninger sa lenge et logisk uttrykk er sant.
Den generelle syntaksen for en while-lokke er :

while logisk uttrykk
setninger
end

setninger blir ikke utfort dersom det logiske uttrykket er usant. Ogsa her kan vi
ha flere lokker inne i hverandre.

Merk at bade for og while tester pa den forste linja 1 lekka .Dersom man gnsker
a hoppe ut av lekkene andre steder, kan det gjores ved & bruke kommandoen
break. Merk at break bare gir uthopp fra den innerste lokka dersom det er flere
lekker. Dersom break brukes utenfor for og while-lgkker, stoppes
eksekveringen av programmet. Dette kan vaere nyttig ved feilfinning.

Nedenfor er noen typiske varianter pa bruken av for og while 1 iterasjonslokker.
Som eksempel ser vi pa en iterasjonsprosess der vi skal finne kvadratrota x av et

tall ¢ : x=+/c. Matematisk er dette ekvivalent md & finne nullpunktet av
funksjonen f(x)=0 der f(x)=x*—-c. Ved bruk av Newton-Raphsons metode far
vi felgende iterasjonsprosess :

Xy = Xy +AX, , m=0,1,...
2

ax =459
2X.,

For a starte iterasjonsprosessen, ma vi tippe en startverdi x,. Dessuten
ma vi ha et stoppkriterium. For & vaere spesifikk, velger vi ¢=20; vi skal finne
X =4+/20. Velger startverdi x, =5.

18

Variant 1

% Program VARIANT1
itmax = 10; epsi = 1.0e-5; x = 5.0;

c =20.0;
it = 0;
while 1

it =it + 1;

if it > itmax
disp('*** Maks. antall iterasjoner ***');
break

end

dx = -(x"*"2 - ¢c)*@.5/x;

X = x + dx

if abs(dx) < epsi

break
end
end
dx =-0.5000
X = 4.5000
dx = -0.0278
X = 4.4722

dx =-8.6266e-005
X = 4.4721

dx =-8.3203e-010
X = 4.4721

>>

Dette er en evighetslokke da betingelsen while 1 alltid er oppfylt. Uthopp fra
lokka skjer enten nar maks. antall iterasjoner er overskredet eller nar
konvergens er oppnadd. Selv om vi skriver ut verdien av it og dx, er det lurt a
gjore oppmerksom pa at maksimalt antall iterasjoner er overskredet.

Variant 2

% Program VARIANTZ2
itmax = 10; epsi = 1.0e-5; x = 5.0;
c =20.0;
for it =1 : itmax

dx = -(x"2 - ¢c)*B.5/x;

X = x + dx;

if abs(dx) < epsi

break
end

19

end
if it >= itmax
disp('*** Maks. antall iterasjoner ***');
break
end

(Resultat som for variantl)

Denne lokka som utferes maksimalt itmax ganger, er mer kompakt. Uthopp fra
lokka for maks. antall iterasjoner er oppnadd, skjer dersom vi har konvergens.
Utskrift om maks. antall iterasjoner ligger na etter lokka.

Variant 3

% Program VARTIANT3

itmax = 10; epsi = 1.0e-5; dx = 1.0;

X =5.0; c =20.0;

it = 0;

while (it <= itmax) & (abs(dx) > epsi)
it =it + 1;
dx = -(x"2 - ¢)*0.5/x;
X = x + dx;

end

if it > itmax
disp('*** Maks. antall iterasjoner ***')
break

end

(Resultat som for variantl)

Denne lokka utfores bare dersom it <= itmax og samtidig dx > epsi. Forat lekka
skal utferes minst en gang, ma dx ved inngang settes til en verdi sterre enn epsi.
Det skjer ingen uthopp fra lokka. Antall iterasjoner ma na telles dersom vi vil
folge iterasjonsprosessen. Utskrift om maks. antall iterasjoner ligger na som 1
variant2, etter lokka. Vi skal se pa noen eksempler pa bruk av variant 2 og 3
etter vi har sett litt neermere pa funksjoner.

FUNKSJONER

Funksjoner programmeres i funksjons M-filer og tilsvarer det som generelt kalles
subprogram. Dette er program som brukes av andre program.

Generell syntaks : function [utl,ut2,...utn] = fnavn(innl,inn2,....innk)
Linja over definerer en funksjon med navn fnavn. Vi har k inn-parametre og n

ut-parametre. Dersom vi bare har en ut-parameter, kan vi utelate hake-
parentesene.

20

Vi ser pa et enkelt eksempel der vi har laget en funksjon som beregner
parabelen y = x*. Funksjonen lagres som func.m

function y = func(x)
y = x"2;
» y = func(2)

4

x og y kan veere vektorer eller matriser, men da ma funksjonen skrives slik at
den opererer rett pa denne typen variable.

function y = func(x)

y = X."2;

»z=1[0 : 0.1 : 0.5];
» v = func(z)

V =

] 0.0100 0.0400 0.0900 0.1600 0.2500

Legg merke til at det ikke er noen sammenheng mellom navnene pa de variable
1 definisjonen av funksjonen og navnene som benyttes nar den brukes.

(Nar vi bruker en funksjon, sier vi at vi kaller funksjonen). Men vi ma passe pa
at de er av samme type. Legg ogsa merke til at da x er en linjevektor blir ogsa y
en linjevektor. I mange tilfeller er det lurt a initialisere ut-parametrene dersom
de er vektorer og matriser. I tilfellet over kan vi f. eks. skrive :

function y = func(x)
y = zeros(size(x));
y = x."2;

Ved 4 bruke size sorger vi for at funksjonen virker for bade linje- og kolonne-
vektorer.

Dersom du redefinerer dine inngangsvariable inne 1 funksjonen, vil disse

bli mellomlagret til funksjonen er utfort. (Det blir ikke laget kopi av
inngangsdata som ikke redefineres). Matlab bruker her en overforings-metode
for parametre som kalles “call by value”. Dermed blir ikke de opprinnelige
verdiene odelagt. Dette betyr ogsa at du ikke sparer plass ved 4 redefinere
inngangsdata. Merk ogsa at alle lokale variable som defineres i en funksjon,
forsvinner nar funksjonen er utfort.

function y = func(x)
y = zeros(size(x));
a=1;

y = X."2;

X = 2*%X;

21

» v = func(z)
V =

@ 0.0100 0.0400 @3.0900 0.1600 @.2500
» Z
Z =

[’} 3.1000 3.2000 3.3000 3.4000 3.5000
» a

??? Undefined function or variable 'a'.
Vi ser her at z har fremdeles sin opprinnelige verdi. Den lokale variable a som vi
definerte, blir slettet nar funksjonen er utfort.

Vi kan ogsa overfore parametre ved bruk av kommandoen global.

function y = func(x)
y = zeros(size(x));
global P Q;

y =x."2+ P +0Q ;

» global Q P;
»Q=1; P =2;
» v func(z)
V =

3.0000 3.0100 3.0400 3.0900 3.1600 3.2500

Med Q = 1 og P = 2 har vi addert 3 til vektoren v . Merk at rekkefolgen av de
globale variable kan vere forskjellig 1 det kallende programmet og det kalte
programmet. (Godt nytt for dem som er vant til Fortran). Flere globale variable
skal skilles med mellomrom; ikke komma. Sletting av globale variable ved a
bruke clear virker bare i kommandovinduet.

Subfunksjoner

Det er mulig 4 bruke funksjoner inne 1 funksjoner. En slik funksjon, kalt
subfunksjon, ma ligge helt tilslutt 1 hovedfunksjonen.

function y = func(x)

y = zeros(size(x));
a = f(x);
y = a*x."2;

function fac = f(t)
fac = sum(t);
» v = func(z)
V:
] @.0150 0.0600 @.1350 0.2400 @.3750

Her er func hovedfunksjonen og f subfunksjonen. Skriv help function for et

annet eksempel.

22

23

EKSEMPEL PA BRUK AV FUNKSJONER
Nullpunksbestemmelse ved bruk av sekantmetoden.

Sekantmetoden er beskrevet 1 avsnitt 2.2 1 kompendiet. For oversiktens skyld
gjentar vi beskrivelsen her.

v A

f(x)

Vi skal finne nullpunktet x* (kan veere flere) av funksjonen y=f(x).
Utforer en iterasjonsprosess etter folgende skjema :

Xy = X, +AX, m=1,2,...

X — X1
AX = —f (Xm) . |: f (Xm) —f (Xm—l):|

Figuren viser prosessen for m = 2. Vi har valgt a sette iterasjonsindekset m nede
da det ikke er noen fare for kollisjon med andre indekser.
For a komme 1 gang, ma vi tippe to verdier x, og x,. Prosessen gjentas til et

konvergenskriterium er oppfylt, f.eks. |AX| <¢g eller |AX| < |X|-52. Kombineres
gierne med |f (x,,,,)| < &.

La oss bruke sekantmetoden til a finne den reelle rota av tredjegradpolynomet
f(x) = x* +4x*>-10. (Et tredjegradspolynom med reelle koeffisienter har alltid
minst en reell rot). Figuren nedenfor viser polynomet tegnet for x [0, 2].

Funksjonen x2 + 4x2 -10

24

Vi ser at vi har et nullpunkt 1 intervallet [1.2, 1.4] , og pa en lommekalkulator
med nullpunktsleser finner vi nullpunktet x* =1.365200134 med 10 korrekte
siffer. La oss gjenta beregningen med bruk av sekantmetoden og bruker
startverdier X, =00gx, =2.

I den forste versjonen utferer vi iterasjonsprosessen et visst antall ganger uten a
spesifisere noe iterasjonkriterium. Dette er ofte lurt nar vi begynner pa et
problem der vi er usikker pa iterasjonsforlopet.

Programmet sekantl gir felgende resultat :

m dx f(x) X

1 -1.17e+000 1.40e+001 ?.8333333333
2 3.75e-001 -6.64e+000 1.2087912088
3 2.11e-001 -2.39e+000 1.4196238401
4 -5.87e-002 9.22e-001 1.3608992155
5 4.22e-003 -7.14e-002 1.3651166138
6 1.14e-004 -1.87e-003 1.3652302546
7 -2.41e-007 3.98e-006 1.3652300134
8 1.34e-011 -2.21e-010 1.3652300134

Vi ser at vi har fatt 10 korrekte siffer etter 7 iterasjoner. Legg merke til at
prosessen gar langsomt 1 begynnelsen; prosessen skyter fart forst etter 6
iterasjoner. Det gjelder generelt bade for Newton-Raphsons metode og
sekantmetoden at vi ma veere neaer rota for a fa rask konvergens.
Listingen av programmet er vist nedenfor.

% Program sekantl

clear

X0 =0.0 ; x1 =2.0; % Startverdier
f@ = func(x@);

mmax = 8;
sl = "%2.0f % 7.2e % 71.2¢e %13.10f \n';
disp(' m dx f(x) x ')
disp('----mmmmmmmm)
for m =1 : mmax

fl = func(x1);

dx = - fl1*(x1 - x@)/(f1 - f@);

X = x1 + dx;
fprintf(sl,m,dx,fl,x);

x@ = x1;
x1l = x;
fo = f1;

end

function y = func(x)
y = xX"3 + 4*x*2 - 10;

25

Nar vi na vet at iterasjonsprosessen forlgper greit, kan vi legge inn et
konvergenskriterium. Dette er gjort 1 versjonen sekant2 nedenfor.
(Se avsnittet Utskrift av tabeller angaende fprintf)

% Program sekant?

xg =0.0 ; x1 =2.0; % Startverdier

f@ = func(x@);

itmax = 10; epsi = 1.0e-7; it = 0; dx = 1;
while (abs(dx) >= epsi) & (it <= itmax)

it =it + 1;
fl = func(xl);
dx = - fl*(x1 - x@)/(fl1 - f@);
X = x1 + dx;
xX@ = x1;
x1l = x;
fog = f1;
end

if (it > itmax)

disp('"*** Maks. antall iterasjoner ***')
end
fprintf('\n x = %13.10f \n',x);

FUNKSJON SOM INN-PARAMETER I EN FUNKSJON
Eksempel : Nullpunktslesere

Anta at vi ensker a lage en funksjon sekant som finner rotter av vilkarlige
funksjoner. I dette tilfellet onsker vi & bruke navnet pa funksjonen som vi skal
finne rottene av, som innparameter 1 sekant. Dette far vi til ved a bruke
kommandoen feval (function evaluation). Ved & bruke sekant2 som modell, kan
sekant skrives som folger :

function rot = sekant(fname,x@,x1,itmax,epsi)
f@ = feval(fname,x@);
it = 0; dx = 1;
while (abs(dx) >= epsi) & (it <= itmax)
it =it + 1;
fl = feval(fname,xl);

dx = - fl*(x1 - x@)/(fl - f@);
X = x1 + dx;
x@ = x1;
x1l = Xx;
fo = fl;
end

if (it > itmax)
disp('*** Maks. antall iterasjoner ***')
end

26

Dersom vi bruker sekant pa funksjonen func i det forrige eksemplet,far vi:
rot = sekant('func',x@,x1,itmax,epsi)

Legg merke til at istedenfor fname, setter vi inn det virkelige navnet pa den
funksjonen som vi skal finne rota av. Denne er lagret som en m-fil med navn
func.m og ma ligge pa sokestien. Merk ogsa apostrofene siden kommandoen
feval antar at fname er en streng.
Fra og med versjon 6.0 av Matlab anbefales det 4 bruke @ (kreollnabla) foran
funksjonsnavnet istedenfor a sette inn funksjonsnavnet som en streng. For
tilfellet ovenfor med den nye notasjonen :

rot = sekant(@func,x@,x1,itmax,epsi)
Da denne nye standarden ikk er kompatibel med tidligere versjoner av Matlab,
velger vi a bruke den gamele maten med a angi navnet som en streng.

Det ma nevnes at sekantmetoden 1 umodifisert versjon som vist ovenfor, ikke er
noen god nullpunktsleser i generelle tilfeller. Det er bedre a bruke Matlabs egen
nullpunktsleseren fzero. (Har kalkulatoren din en nullpunktsleser, er dette
vanligvis en variant av fzero).

La oss bruke fzero pa funksjonen ovenfor. Anta forst at vi ikke kjenner

noe intervall som inneholder nullpunktet, men vi har en anelse om at
nullpunktet ligger 1 neerheten av 1.0

» format Tong

» x0 = 1.0;

» rot = fzero('func',x®d)

Zero found in the interval: [0.54745, 1.4525].

rot =
1.36523001341410
»

fzero kan kalles pa en rekke mater(skriv help fzero). Dersom vi kjenner et
intervall som rota ligger 1, kan vi spesifisere dette.

» x@ =[1.2 1.4]7;
» rot = fzero('func',x@)
Zero found in the interval: [1.2, 1.4].
rot =

1.36523001341410
»
Normalt vil den siste varianten vaere raskere. I begge tilfellene ovenfor har vi
funne rota med full presisjon, noe vi kan tillate oss 1 dette enkle tilfellet. For mer
kompliserte tilfeller kan dette veere bade tidkrevende og unedvendig. Anta at det
er tilstrekkelig med ca. 5 siffers neyaktighet.

» x@ = [1.2 1.4];
» options = optimset('Tolx',1.0e-5);

27

» rot = fzero('func',x@,options)
Zero found in the interval: [1.2, 1.4].
rot =
1.36523001552733
»
Vi ser at vi har fatt adskillig mer enn 5 korrekte siffer. (Skriv help optimset
for a se den totale lista over opsjoner)

Eksempel : Bestemte integral

La oss lage en funksjon som integrerer en funksjon y=f(x) fra y=a til y=b

ved bruk av trapesmetoden. Deler intervallet [a, b] 1 n deler der hver del har
lengde h ~ b3 peq X, =a og X,,, =b blir x, =a+h(k-1) ,k=1,2,..,n+1.
n

Fra figuren ovenfor far vi felgende uttrykk for arealet :

h
A =E(y1 + Vo) th(Y, + Y+ 4 Y,)

h
:—E(y1 +Yo)th(Y + Y, oo+ Yoa1)

La oss som et eksempel integrere sin(x). Funksjonen trapesl
gjor dette.

function intsin = trapesl(a,b,n)
h = (b-a)/n; % Intervall-lengde
np =n+ 1 ; % Antall knutepunkt

s = 0;
for k =2 :n
X =a + (k-1)*h; y = sin(x);
s = s + y*h;
end
intsin = s + h*(sin(a) + sin(b))*@.5;

T
Vi bruker trapesl til 4 beregne J.Si n(x)dx= 2.
0

»a=0; b=pi; n=50;
» value = trapesl(a,b,n)
value =

1.9993

Problemet med denne versjonen er at vi kan bruke den bare til 4 integrere sinus-
funksjonen. Dersom vi gnsker 4 integrere en annen funksjon, ma vi gjere en
forandring 1 programmet. Bruker derfor kommandoen feval som vi brukte 1
programmet sekant til a sette funksjonsnavnet 1 parameterlista. Benytter
samtidig anledningen til 4 gjore trapesl mer effektiv ved a beregne alle

28

funksjonsverdiene for vi gar inn i summasjonslekka. Bruker dessuten den
innebygde kommandoen sum. Den nye versjonen er vist nedenfor.

function trapint = trapes2(fname,a,b,n)

% Integrerer en funksjon med bruk av trapesmetoden
h = (b-a)/n; % Intervall-Tlengde

np =n+ 1 ; % Antall knutepunkt

x = linspace(a,b,np); % Knutepunktsverdier

y feval(fname,x); % Funksjonsverdier

s = h*sum(y);

trapint = s - h*(y(1l) + y(np))*0.5;

fname er navnet (pa funksjonen som skal integreres.

Vi gjentar beregningen som vi gjorde ovenfor :
»a=40; b=pi; n=50;
» value = trapes2('sin',a,b,n)
value =
1.9993

La oss deretter bruke trapes2 pa funksjonen som vi har brukt under
nullpunkts-eksemplene:

function y = func(x)
y = x."3 + 4.*x."2 - 10;

La oss integrere denne mellom x = 1 og x = 2 der det analytiske resultatet er

% =3.08333.... Legg merke til at trapes2 ma ha alle funksjonsverdiene samlet i

en vektor. Derfor ma vi na bruke elementvise operatorer 1 func.

»a=1.0; b=2.0; n=50;
= trapes2('func', a, b, n)

V1 gjentar at fra og med versjon 6.0 av Matlab anbefales det a bruke
@ (krellnabla) foran funksjonsnavnet istedenfor a sette inn funksjonsnavnet
som en streng. For tilfellet ovenfor : value = trapes2(@func, a, b, n)

Eksemplene ovenfor er ment & vise programmering i Matlab. Nar en gitt
funksjon skal integreres, velger vi heller a bruke metodene som er innebygget 1
Matlab, f.eks quad og quadl.

29

Ordineere differensialligninger. ODE45

I lefsa ODE ser vi pa litt avansert bruk av odelssere 1 Matlab. La oss her se pa
enkel bruk av ode45 som pa mange mater er arbeidshesten blant odelgserne 1
Matlab. Som eksempel bruker vi en ikke-lineser svingeligning med dempning.

2
d—f =—a-| Z+ dz/dz (1)
dt dt |dt
Startbetingelser : z(0)=h, %(O) =0 (b)
(1) skrevet som system :
dz _
dt
dv
—=—a-(z+VV 2
- (z4y) (@)

z0)=h,v(0)=0
Nar vi skal bruke ode45 eller de andre loserne 1 Matlab, ma (2) kodes som en

Matlab-funksjon og legges i en egen m-fil. Istedenfor z og v bruker vi na en
vektor y med 2 elementer. Setter z = y(1) og v = y(2) slik at systemet i (2) blir :

dy@) _

T y(2
D yw + @)y ®)

y@)(©0)=h,y(2)(0)=0
I den videre beregningen setter vi « =0.07 og h =8 ®)

(3) skrevet 1 Matlab kan f.eks se slik ut :

function dydt = fcn(t,y)

dydt = zeros(2,1)

dydt(1l) = y(2);

dydt(2) = -0.07*(y(1) + y(2)*abs(y(2));

Noen kommentarer : Denne funksjonen heter fcn med argumenter ¢ og y . Nar
funksjonen blir kalt, returnerer den med de deriverte 1 vektoren dydt. Navnene
dydt, fen , t og y kan velges fritt. Merk at vi har spesifisert dydt som en kolonne-
vektor. (Bruk help ode45 1 Matlab). Denne funksjonen legges 1 en egen m-fil.
Anbefaler a bruke samme navn pa fila og funksjonen slik at navnet pa fila

1 dette tilfellet blir fen.m.

La oss sa skrive forste versjon av programmet. Bestemmer oss for a plotte z og v
som funksjon av ¢ opptil ¢ = 70s.

30

% Program versjonl

% Bruker ode4d5

clear

y@ = [8 ; @]; % Startverdier
tintervall = [8 70.0];

[t,y] = oded5('fcn',tintervall,yd);

% Plotter z og v som funksjon av t
plot(t,y(:,1),t,y(:,2),"'-.");

Nar programmet uferes, far vi folgende plott :

La oss se neermere pa programmet. Anbefaler a starte all programmer med
kommandoen clear. Denne nullstiller alle variable (Unntaket er variable definert
med kommandoen global. Disse ma nullstilles fra kommando-vinduet.). Deretter
setter vi startverdiene i1 kolonne-vektoren y0. (Alternativ: y0=[8 0]' som
transponerer linjevektoren til en kolonnevektor). Tidsintervallet angis 1
linjevektoren tintervall. Det forste tallet angir startverdien og det siste
sluttverdien. Deretter kalles ode45. Strengen 'fcn’ angir egentlig navnet pa m-
fila og ikke funksjonen. Derfor er det om tidligere nevnt lurt 4 bruke samme
navn pa fil og funksjon. (Fra versjon 6.0 av Matlab, anbefales @fcn som nevnt
tidligere). Resultatet av kallet er en vektor ¢ og en matrise y. Vektoren ¢
inneholder alle tidene som ode45 har funnet lgsning for. Lengden kan finnes ved
a bruke kommandoen Tength(t) eventuellt size(t). I dette tilfellet finner vi
length(t) =117. (Se kommentar angaende parameteren Refine i lefsa ODE).
Forste kolonne av matrisa y inneholder z-verdiene (antall 117) og den andre
kolonna v-verdiene. (De deriverte av forste kolonne). Vi er sa klar til 4 plotte.
Nar vi skriver ¢, y(:,1), plottes ¢ langs den horisontale aksen og z langs den
vertikale. Merk at y(:,1) betyr 1. kolonne der kolonet henviser til alle elementene.
Deretter plotter vi hastigheten v 1 samme figuren ved a skrive ¢, y(:,2) der 2

31

henviser til den andre kolonnen som inneholder hastighetene. Tilslutt har vi lagt
til strengen '-.' Dette har vi gjort for at den siste kurven skal tegnes med
strekpunktert linje istedenfor heltrukket. Plotting er behandlet mer detaljert
senere. (Skriv help plot for flere muligheter)

Versjon 2

Vi skal na 1 tillegg skrive tabell for z og v. Tabellen skal ga til 13s da vi ser av
plottet at dette tilsvarer noenlunde maks. negativ z-amplityde (v~ 0)

% Program versjon2

% Dette er versjonl med tillegg av tabeller
% Bruker ode4b

clear

yd = [8; @]; % Startverdier

tintervall = [0 70.0];

[t,y] = oded45('fcn',tintervall,yd);

% Plotter z og v = dz/dt som funksjon av t
plot(t,y(:,1),t,y(:,2),"'-.");

% Tabeller for z og v opptil 13s

options = odeset('RelTol',1.0e-5);

y@ = [6; @]; % Startverdier

tintervall = [@ : 1 : 13];

[t,y] = oded45('fcn',tintervall,y@d,options);
fprintf(' %5.1f %13.4e %13.4e \n',[t y]1');

0.9 8.0000e+000 0.0000e+000
1.0 7.7234e+000 -5.4642e-001
2.0 6.9327e+000 -1.0171e+000
3.0 5.7320e+000 -1.3607e+000
4.9 4.2598e+00@ -1.5597e+000
5.0 2.6582e+000 -1.6226e+000
6.0 1.0526e+0080 -1.5717e+000
7.9 -4.5573e-001 -1.4324e+000
8.0 -1.7903e+000 -1.2276e+000
9.0 -2.8955e+000 -9.7630e-001
10.0 -3.7324e+0080 -6.9318e-001
11.9 -4.2752e+000 -3.8998e-001
12.0 -4.5089e+00@ -7.6313e-002
13.0 -4 .4276e+000 2.3733e-001

32

La oss se naermere pa siste delen av dette programmet. Vi har na tatt med en
linje options = odeset('RelTol’,1.0e-5). RelTol er den relative neyaktigheten vi
onsker. I plottedelen av programmet satte vi ikke RelTol. I ode45 settes da
RelTol = 1.0e-3. Dette er ofte godt nok for plotting. (Se lefsa ODE for flere
detaljer). Viensker utskrift for hvert sekund. Derfor skriver vi

tintervall = [0 : 1: 13] (eventuellt [0 : 13]) som er en linjevektor med 14 elementer:
0, 1,2,...13. Merk at t-vektoren na bare bestar av disse 14 verdiene. (Under
beregningen brukes om nedvendig flere). I kallet av ode45 legges parameteren
options etter startvektoren y0. For a fa pen utskrift, bruker vi format-
kommandoer. (Flere detaljer under avsnittet Utskrift av tabellert 1 lefsa).
Konstruksjonen [t y] gir en matrise med tre kolonner der forste kolonne er ¢-
vektoren osv. Nar vi bruker formatkommandoer, skrives en matrise ut kolonne
for kolonne. Det vi ensker er a skrive ut matrisa linje for linje. For a fa til dette,
ma vi transponere matrisa ved a skrive [¢ y]'. Na blir kolonnene linjer og linjene
kolonner.

UTSKRIFT AV TABELLER

Nar vi skriver til skjerm , papir eller en annen fil, bruker vi kommandoene disp,
fprintf og sprintf. disp og fprintf serger for utskrift mens sprintf lager en
utskriftstreng som sa kan skrives ut med fprintf og disp.

Syntaks :

disp(streng og/eller variable)
sprintf (<Streng med format specifikasjoner>, <Liste av variable>)

Syntaksen for fprintf er som for sprintf, men i tillegg kan det spesifiseres at det
skal skrives til en fil.

Et format ser ut som folger : % mW.PF
Tegnet % angir starten av et format og ma alltid veere med. m er en
marker som kan ha foelgende verdier (kan utelates):

minus tegn (-) Venstrejusterer tallet. Ellers hoyrejustert
+ Skriv alltid tallets fortegn (pluss eller minus)
0 Utfyll tallet med ledende nuller isteden for mellomrom

W angir antall plasser som er avsatt til tallet. (Kan utelates). P angir antall
desimaler etter desimalpunktum (presisjonen). (Kan utelates).
F er formatbeskriver.(Ma veere med). En liste over verdier for F er gitt nedenfor

33

F Beskrivelse

c Et enkelt tegn

d Heltall med fortegn

e Eksponentform (liten e)

E Eksponentform (stor E)

f Desimaltall

g Kompakt versjon av f eller g

G Som ovenfor, men med stor G

0 Oktalt tall (uten fortegn)

s Streng av tegn

u Heltall uten fortegn

X Heksadesimalt tall(smabokstaver)
Som ovenfor , men med store bokstaver

La oss se pa et eksempel der vi skriver en tabell over feilfunksjonen erf(x) og
den komplementeere feilfunksjonen erfc(x) = 1 - erf(x) for 0<x<2

x =100 :0.25 : 2.0]";

yl = erf(x);

y2 = erfc(x);

disp(' X erf(x) erfc(x)")
disp(’ W =-cememecem e ")
disp([x yl y21);

som gir utskrift :

X erf(x) erfc(x)

]] 1.0000
@.2500 0.2763 @.7237
@.5000 @.5205 @.4795
@.7500 @.7112 @.2888
1.0000 @.8427 @.1573
1.2500 0.9229 0.0771
1.5000 @.9661 @.0339
1.7500 @.9867 @.0133
2.0000 @.9953 0.0047

34

Legg merke til at x er generert som en kolonnevektor slik at ogsa y1 og y2 blir
kolonnevektorer. Deretter bruker vi disp til a lage tabell-overskrift. Ber deretter
om utskrift av matrisa [x y1 y2]. Merk at matrisa skrives ut linje for linje slik
som vi gnsker. Tallene 1 tabellen blir utskrevet med den valgte versjonen av
kommandoen format. I dette tilfellet er dette short som gir 4 desimaler.
Dersom vi hadde valgt format long, ville vi fatt utskrift med 14 siffer for alle
kolonnene. Vi ser derfor at vi ikke kan velge forskjellig format for de enkelte
kolonnene med ensidig bruk av disp. Kombinerer derfor disp med sprintf.

x =100 : 086.25 : 2.0]";

yl = erf(x);
y2 = erfc(x);
disp(' X erf(x) erfc(x)")
disp(' m-mmmmmeeimiie i ")
disp(sprintf(' %5.2f %7 .4Ff %12.4e \n',[x yl y21'));
X erf(x) erfc(x)

0.00 0.0000 1.0000e+000

g.25 0.2763 7.2367e-001

g.50 @.5205 4.7950e-001

@.75 @g.7112 2.8884e-001

1.00 0.8427 1.5730e-001

1.25 0.9229 7.7100e-002

1.50 ?.9661 3.3895e-002

1.75 0.9867 1.3328e-002

2.00 @.9953 4.6777e-003

I sprintf har vi na skrevet en streng som inneholder formatteringskoder. Disse
starter som vi vet med %. Strengen avsluttes med \n som betyr ny linje. Hadde
vi utelatt \n , ville hele matrisa blitt skrevet pa en linje. Legg merke til at vi har
transponert matrisa [x yl y2]. Nar vi bruker formatteringskoder, skrives en
matrise ut kolonne for kolonne; ikke linje for linje som vi ensker. Derfor ma
matrisa transponeres. Dette er ikke nedvendig nar vi bare bruker disp, som 1 det
forrige eksemplet.

I stedenfor disp og sprintf, kan vi her greie oss med fprintf alene som vist
nedenfor.

35

x =100 :0.25 : 2.0]";
yl = erf(x);

y2 = erfc(x);
fprintf(' X erf(x) erfc(x)\n');
fprintf(' @ ------immi e \n');
fprintf(' %5.2f %7.4f %12.4e \n',[x yl y21');

X erf(x) erfc(x)

0.00 0.0000 1.0000e+000

@.25 0.2763 7.2367e-001

@.50 @.5205 4.7950e-001

@.75 @.7112 2.8884e-001

1.00 @.8427 1.5730e-001

1.25 0.9229 7.7100e-002

1.50 @.9661 3.3895e-002

1.75 0.9867 1.3328e-002

2.00 @.9953 4.6777e-003

sprintf er nyttig nar formatteringsstrengene blir lange samt 1 forbindelse med
tekst pa plott.

PLOTTING
La oss plotte feilfunksjonene 1 det forrige eksemplet.

»x=0:0.1: 2;
» yl = erf(x);

» y2 = erfc(x);

» plot (x,yl,x,y2);

0.9F \

0.8+
0.7 \

0.6+ \

0.5r
0.4+
0.3r
0.2+

0.1-

36

Den forste vektoren plottes langs x-aksen mens den andre plottes langs y-aksen.
I dette tilfellet har vi plottet to funksjoner 1 samme plottet. Dette kan vi gjore
fordi begge har samme utstrekning langs bade x- og y-aksen. I praksis har vi
bruk for a fortelle hva vi har plottet, samt a skille de to funksjonene fra
hverandre. Dette gjores med title og legend samt plottesymboler.

% Program plotting

X=0 : 0.1 :2;

yl = erf(x);

y2 = erfc(x);

plot(x,yl,'k',x,y2,"'k-.");

grid on

title('Feilfunksjonene erf(x) og erfc(x)', ' 'Fontweight', 'Bold")

xlabel('x"', 'Fontweight','Bold")

ylabel('erf \rightarrow , erfc\rightarrow', 'Fontweight', 'Bold")
/] legend('erf', 'erfc')

R OO NOYYO D WN R

Feilfunksjonene erf(x) og erfc(x)

[

| | | I | I I —
. | | | | | | | — erf
| | | | | | | |
07K) g — erfc |4
Nl | T l : H . l ‘
| | | | | | | |
0.8 N T
N | | | | | | | |
| | | { | | | | |
0.7F---- I N [Ry [P
| | | | | | | |
: A | | | | | | | |
| AR NS 7 AN N S S I
g l f\ l l l l l l l
4 A A
0 l /N l l l l l l
e R
l l N l l l l l
A e i e S e
| | | [N | | | | |
020 oA
l l l l ~ l l l
s S S
l l l l LT — l
0 I I I I I I T e

o
o
[N
o
~
o
o
o
o)
X o bo- -
N
N
[
i
[
o
[
o)
N

Forklaring til det meste finnes ved bruk av help plot, men noen kommentarer
kan veere nyttige. I linje 5 har vi brukt 'k' og 'k-.'. 'k' brukes for 4 angi at
plottefargen skal vaere svart. Uten denne vil plottefargen veere bla for den forste
kurva og grenn for den andre. (Spesielt den gronne vises darlig pa en gratone -
printer). For den andre kurva bruker vi 'k-."' der - . angir strekpunktert linje.
I line 6 har vi spesifisert nett. Vi setter overskrifta i linje 7 og angir uthevet
skrift. Ilinje 8 og 9 setter vi tekst pa aksene. Legg merke til \rightarrow som
ganske riktig blir en hoyrepil pa figuren. Det finnes en mengde symboler,

deriblant de greske bokstavene, som kan brukes pa figuren. En liste over disse er

37

gitt 1 appendiks . I linje 10 setter vi tegnforklaring til kurvene (legend) der
erf(x) har heltrukket linje og erfc(x) har en strekpunktert. Denne boksen kan
flyttes rundt pa figuren med musa. Dersom du har bruk for 4 sette annen tekst
pa figuren, prov help text og help gtext.

Ovenfor har vi tegnet begge kurvene samtidig ved a plotte dem 1 den samme plot-
setningen. Samme effekten kan vi fa ved folgende sekvens :

plot(x,yl)

hold on

plot(x,y2)

hold off

Vi bruker denne framgangsmaten dersom det skal plottes mange kurver pa
samme figur , f. eks. 1 en iterasjonsprosess.

Vi kan ogsa dele plottevinduet opp 1 delplot ved & bruke kommandoen

subplot. Eksempel : subplot(3,3,k) betyr at plottevinduet skal deles opp i en
3x3matrise av delvindu og at det neste plottet skal plasseres i delvindu k.
Nummereringen av delplottene er som folger :

Programmet nedenfor , hentet fra Van Loan[5], viser dette.

% Script File: Polygons

% Plots selected regular polygons.

close all

theta = Tinspace(@,2*pi,361);

¢ = cos(theta);

S sin(theta);

k=0;

for sides
stride
k=k+1;
subplot(3,3,k)
plot(c(l:stride:361),s(l:stride:361))
axis([-1.2 1.2 -1.2 1.2])

axis equal

end . . .
0 > o < > 0
-1 -1 -1

[345 6810 12 18 24]
36@/sides;

1O

- =) -
[N o [
[N o [

N
o
P
-
(=}
P
-
o
P

[o -
'S o =
'S o =

N
o
P
-
(=}
P
-
o
P

38

BANDMATRISER
TRIDIAGONALE MATRISER

Bruker ligning (2.3.16) 1 kompendiet som eksempel.

y'(x)+2xy'(x) =0 (1)
med randbetingelser : y(0)=0,y(x,)=1

(Mer noyaktig randbetingelse : y —1 for X —»).
Med den mer noyaktige randbetingelsen har (1) lesningen y(Xx) =erf(x).

Diskretisering
F—> X
0.0 X
| |
| T T | | |
0 1 2 i N N+1

Med henvisning til figuren, far vi :
XOO

x=h-1,i=01,..,N+1der h= (2)
N +1
Diskretisering med sentraldifferanser vil gi en ligningsystem med tridiagonal
koeffisientmatrise :
b ¢ 1] [d]
a b ¢ %, d,
=| . 3)

Ved bruk av sentraldifferanser 1 (1) samt bruk av (2) :

yi+l_2{i+yi—l + 2h.i_(yi+l_yi—lj=0
h 2h
som ordnet gir :

39

(1_h2'i)yi—1 _Zyi+(1+h2‘i)yi+1:0 (4)

Skriver ut (4) for i = 1:
-2y, +(1+h?y,=0day, =0 fra (1b)

Skriver ut (4) for i =N :
(L-h°N)Y,,)~2yy =—(@+h*N) day,., =1 fra (1b)
Totalt har vi da fatt disse uttrykkene for diagonalene :

bh=-2,i=12..,N , a=1-h*i,i=23.,N
c=1+h%-i,i=12.,N-1 (5)
d=0,i=12.,N-1,d, =—(1+h®N)

Matlab-programmet nedenfor viser fremgangsmaten der vi bruker subrutina
tdma til a lese ligningsystemet i (5).

% Program trivl
clear
xmax = 4.0;
h =0.05; % skrittlengde
ni = round(xmax/h) ; %Antall intervall
xmax = ni*h; % For sikkerhets skyld
neq =ni -1 ; % Antall Tigninger
%--- Initialisering(kolonnevektorer)
b = -2*ones(neq,1);
c = zeros(neq,1);
d=c; a=c ;
% --- Genererer over-og under-diagonaler
for k = 1l:neq
fac = k*h"2;
a(k) =1 - fac;
c(k) =1 + fac;
end
d(neq) = -(1 + fac);

y = tdma(a,b,c,d);

y = [0y ; 11;

%---- Utskrift avy ----

X = [@ :h: xmax]'; % Som kolonnevektor

ya = erf(x); % Analytisk Tgsning

fprintf('\n X y ya \n\n')
fprintf(' %7.3f %10.5f %10.5f \n',[x y yal');

40

Vektorisering

Matlab er laget for a operere raskt pa vektorer uten bruk av lekker. For
eksempel er operasjonen y = x raskere enn

for k = 1: n
y(k) = x(k);
end

Denne teknikken kan utvides til bruk av indeksvektorer. Eksemplet ovenfor kan
ogsa skrives :

k = 1:n; % Indeksvektor

y(k) = x(k);

Indeksvektoren k gar gjennom alle verdiene fra 1 til n slik at effekten blir som 1
tilfellet y = x . Vi kan ogsa bruke indeksvektoren pa deler av vektoren. Merk at
indeksvektoren k ogsa krever lagerplass etter at operasjonen er fullfort. Gar vi
tilbake til lekka 1 triv1l, kan vi generere diagonalen a og ¢ ved a bruke en
indeksvektor :

k = 1: neq; % Indeksvektor
a(k) =1 - k*h"2;
c(k) 1 + k*h"*2;

Denne versjonen er ca. 25 ganger raskere enn lgkka. Generelt er bruk av
indeksvektor mye mer effektivt enn bruk av lekke. Nar vi derimot ser pa den
virkelige eksekveringstiden, foles kanskje ikke effekten sa stor. Med neq =
40000 og en PC med 266MHz prosessor, bruker lokka 2.14s mens bruk av
indeksvektor krever 0.09s. Indeksvektoren trenger 1 dette tilfellet 312.5 KB
lagerplass.

GLISNE MATRISER I MATLAB

Med glisne matriser (eng: sparse matrices) mener vi matriser som har mange
null-elementer 1 forhold til totalt antall elementer. Bandmatriser er typiske.
Matlab har mange kommandoer for behandling av glisne matriser (bruk help
sparse), men vi skal begrense oss til kommandoen spdiags som bygger matriser
av diagonaler.

La oss se pa et eksempel.

a = [1:5]";
A = spdiags([a a al,[-1 @ 1], 5,5);
A = full(A)
A =
1 2 /] /] /]
1 2 3 @ @
/] 2 3 4 /]
@ @ 3 4 5
/] /] /] 4 5

41

Vi lager forst en kolonne-vektor a med elementene 1 til 5. Denne vektoren
bruker vi til a4 lage en tridiagonal matrise [a a a]. spdiags nummererer
diagonalene pa folgende mate: Hoveddiagonalen er 0O, forste overdiagonal er 1,
neste overdiagonal 2 osv. Forste underdiagonal er -1, neste -2 osv. For en
tridiagonal matrise med en underdiagonal og en overdiagonal sammen med
hoveddiagonalen, markeres dette ved [-1 @ 1]. Tilslutt gis sterrelsen pa den
totale matrisa; i vart tilfelle 5x5. Matrisa A blir lagra uten nullelementene. For
a kontrollere hva som lagres, gar vi tilbake til en full matrise med kommandoen
A = full(A). (Bare ved sma matriser, ellers forsvinner vitsen ved a bruke glisne
matriser. Bruk kommandoen spy (A) nar du bare vil kontrollere
lagringsmoensteret). Legg merke til hvordan diagonalene lagres: Elementer med
samme indeks blir lagret 1 samme kolonne, ikke samme linje som vi bruker; se
lign. (3). For a gjore dette helt klart, viser vi et eksempel med 5 ligninger:

Var notasjon:

b ¢ 0 O O X, d,
a b ¢ 0 0f|x| |d
0 & b ¢ O0x|=|d ©)
0 0 a b, c||x]| |d
(0 0 0 a bf[x]| [di]
Lagring ved spdiags: Sl

b C, 0 0 O X d,

Al b C 0 O X d,

0 A, b C, O0||x]|=|d, (7)

0 0 A, b C||x d;

(0 0 0 A b][x] |d]

Vi har brukt store bokstaver i (7) for & markere de elementene som har
forskjellig indeksering fra var notasjon. Et program triv3, basert pa bruk av
spdiags og indeksvektoriserng er vist nedenfor.

xmax = 4.0;

h =0.05; % skrittlengde

ni = round(xmax/h) ; %Antall intervall
xmax = ni*h; % For sikkerhets skyld
neq =ni -1 ; % Antall Tigninger
%--- Initialisering(kolonnevektorer)
b = -2*ones(neq,1);

c = zeros(neq,l); % overdiagonal
d=c; a=c ;

% Lager indeksvektor

J = 2:neq;

42

% --- Genererer over-og under-diagonaler
a(d-1) =1 - J*h"2;
c(d) =1+ (J-1)*h"2;

d(neq) -(1 + negq*h"2);

A = spdiags([a b c], [-1 @ 1],neq,neq);

y = A\d;
y = [8;y ; 11;
%---- Utskrift avy ----

X = [@ :h: xmax]'; %Som kolonnevektor

ya = erf(x); % Analytisk Tesning

fprintf('\n X y ya \n\n')
fprintf(' %7.3f %10.5f %10.5f \n',[x y yal');

Vi har her lagret diagonalene direkte, tilsvarende lign. (7). Men kommandoen
sparse nummererer ogsa den tridiagonale matrise med standard matrise-
notasjon, slik at for et system med fem ligninger kan (3) ogsa skrives :

& A X | g,
A Gy 8y X d,
d3 833 Gy | X [=y
Q3 Gy Qg | | X d,

L 8, 8| [% | | Os]

La oss vise dette :

a = (1:5)";
= spdiags([a a a]l],[-1 @ 1]1,5,5)

>
|

(1,1)
(2,1)
(1,2)
(2,2)
(3,2)
(2,3)
(3,3)
(4,3)
(3,4)
(4,4)
(5,4)
(4,5)
(5,5)

O DRBREDNWWWNNDRN R

43

Legg merke til at null-elementene ikke lagres. Lign. (5) blir na :

b—>a,=-2,i=12,..,N ,

a,—>a,,, =1-h*(@{+1),i=12.,N-1
¢—>a,,=1+h*i,i=12.,N-1
d=0,i=12.,N-1,d, =—(1+h>N)

(8)

Merk at vi har brukt ; = 1,2,..,N-1 ogsa for a-vektoren slik at vi kan beregne a og
¢ 1 samme lokke.

Programmet blir som vist nedenfor :

clear

xmax = 4.0;

h=0.1; % skrittlengde

ni = round(xmax/h) ; %Antall intervall
xmax = ni*h; % For sikkerhets skyld
neq =ni -1 ; % Antall Tigninger

%--- Initialisering. Lagrer temporart b i d og
%--- bruker b-vektoren til & Tage A

d = -2*ones(neq,1); % Hoveddiagonal

A = spdiags([d d d], [-1 @ 1],neq,neq);

% --- Genererer over-og under-diagonaler

for k = 1l:neq -1
A(Ck+1l,k) =1 - (k+1)*h*2; % Underdiagonal
A(k,k+1) = 1 + k*h”*2; % Overdiagonal
end
d(neq) = -(1 + neq*h"2);

y = A\d; %Leser Tligningsystemet

y = [85y ; 11;

%---- Utskrift avy ----

X = [@ :h: xmax]'; %Som kolonnevektor

ya = erf(x); % Analytisk Tgsning

fprintf('\n X y ya \n\n')
fprintf(' %7.3f %10.5f %10.5f \n',[x y yal');

Legg merke til at vi ikke kan bruke indeksvektor 1 dette tilfellet. Vi har brukt
bare en vektor (hoyresiden av systemet) til 4 generere matrisa slik at vi sparer
lagerplass ved a bruke denne versjonen.

44

Det ikke noen fordel a bruke spdiags og A\d sammenlignet med 4 bruke tdma for
losning av et tridiagonalt ligningsystem. tdma er spesialskrevet for & behandle
tridiagonale system mens sparse behandler generelle glisne system. Antall
operasjoner 1 tdma er 2(neq -1) ~ 2neq slik at tidsforbruket er proposjonalt med
antall ligninger. Med en PC med 266Mhz prosessor, loser tdma et ligningsystem
med 4000 ukjente pa 0.45s og bruker folgelig 4.5s pa et system med 40000. Ved
a bruke sparse, trengs 8s for 4000 ligninger og hele 1457s (24 min og 17s) for et
system pa 40000. Regnetiden her er proposjonal med mer enn kvadratet av
antall ligninger. Husk at tdma ikke utforer pivotering, noe som kan skape
problemer dersom systemet ikke er diagonal-dominert; se (lign. (3.1.4) 1
kompendiet. I dette tilfellet kan tripiv brukes istedet. Regnetiden eker na knapt
3 ganger (2.75) 1 forhold til tdma, men gkningen er fremdeles proposjonal med
antall ligninger. Spesialskrevne lgsere for bandmatriser er normalt betydelig
raskere enn de generelle loserne som er innbyggget 1 Matlab.

INNLESNING AV DATA (help iofun)

Den vanligste kommandoen er input som leser interaktivt .
Eksempel :

X = input('les x-verdi : ');
Skriver les x-verdi : pa skjermen og venter pa input fra brukeren.
Lese tabeller fra filer (help load)

Anta at vi har felgende tabell liggende pa en fil med navn func.dat

0.00 0.0000
g.25 0.2763
g.50 0.5205
B.75 .7112
1.00 0.8427
1.25 0.9229
1.50 0.9661
1.75 @.9867
2.00 @.9953

Folgende kommando leser tabellen innien 9x2 matrise :

load func.dat

Merk at matrisa far navnet func. Dersom fila func ikke har noen endelse
(extension) og du skriverload func antar Matlab at dette er en mat-fil som er
en fil pa binger form. Du ma da skriveload func -ascii for a fa rett format.

45

APPENDIKS

Math Symbols

\neq <« \leftarrow e \in
> \geq — \rightarrow c \subset
~ \approx T \uparrow U \cup
= \equiv 4 \downarrow N \cap
= \cong < \Leftarrow 1L \perp
+ \pm = \Rightarrow o \infty
V \nabla o \Leftrightarrow [\int
Z \angle 0 \partial x \times
Greek Symbols
o \alpha o \omega > \Sigma
B \beta ¢ \phi IT \Pi
y \gamma n \pi A \Lambda
o \delta x \chi Q \Omega
e \epsilon v \psi I' \Gamma
k \kappa p \rho
L \lambda c \sigma
p \mu T \tau
v \nu v \upsilon

	FORORD
	INNLEDNING
	VARIABLE
	FILKOMMANDOER
	FUNKSJONER
	UTSKRIFT AV TABELLER
	BANDMATRISER
	TRIDIAGONALE MATRISER
	GLISNE MATRISER I MATLAB

	APPENDIKS

