

start med matlab

Disse sidene er hovedsakelig ment for dem som ikke har brukt Matlab eller som trenger en oppfriskning. Start fra toppen og gå systematisk nedover. I tillegg brukes Matlablefsa. Noe av hensikten er også å bli vant til å bruke hjelpesystemet. Det finnes over tusen kommandoer i Matlab. Disse er beskrevet i detalj i manualene som du får tak i ved å gå til help og helpdesk i menylinja i Matlab. Legg spesielt merke til Getting started som er startmanual

Når du starter Matlab, kommer du inn i kommandovinduet. Dersom du har versjon 6.1, ser du dette :

 To get started, type one of these: helpwin, helpdesk, or demo.

 For product information, type tour or visit www.mathworks.com.

»

Tegnet » er en kommandoprompt og du kan begynne å gi kommandoer.
Med å utføre en kommando, menes å skrive noe etter » og trykke på enter-knappen.

Vi starter med å bruke Matlab som en kalkulator.

Utfør 1.2 + 2.3 . Skjermen viser da følgende :

» 1.2 + 2.3

ans =

 3.5000

»

Vi har fått svaret med 4 desimaler. Svaret er lagret i en variabel ans som er innebygget i Matlab. Når du bruker Matlab, blir det avsatt et område i RAM som kalles arbeidsområdet (workspace). For å finne ut hva som finnes i arbeidsområdet, kan du utføre kommandoen whos som gir dette resultatet :

 Name Size Bytes Class

 ans 1x1 8 double array

Grand total is 1 elements using 8 bytes

Vi ser at det er avsatt plass til en variabel med navn ans med plassbehov 8 bytes.
Merk at variable i Matlab oppfattes som matriser slik at en skalar er en
[image: image1.wmf]11-matrise.

´

Innholdet i arbeidsområdet fjernes med kommandoen clear. (Ikke gjør dette nå). En enkelt variabel x fjernes ved clear x.

Eks : Utfør a = 1. Utfør deretter kommandoene whos, clear a og whos tilslutt for å kontrollere innholdet i arbeidsområdet. (Vi skal da ha bare ans tilbake). Se side 3 i Matlablefsa om tillatte navn på variable.

Anta at vi ønsker flere desimaler. Utfør help format. Du får da en liste med alternativer. Utfør format long. Ved å utføre ans på nytt, får vi 14 desimaler. Matlab regner med ca. 15 siffers nøyaktighet uavhengig av hvilket format du velger. Dersom du synes at utskriften tar mye plass på skjermen, kan du velge format compact (forsøk). (format loose gir tilbake de ekstra linjene.)

Vi går tilbake til 4 desimaler ved å uføre format som er en forkortelse for
format short
Utfør 1/2 +1/3 +1/4 +1/5 som gir 1.2833. Velg format rat og skriv ut ans på nytt. Du skal da få 77/60. (Vi bruker 4 desimaler videre)

En hel del av kommandoene ovenfor finnes ved å utføre help general. Bruk av noen av disse kommandoene er behandlet side 4 i Matlablefsa.

Når du opererer i kommandovinduet, har du adgang til en primitiv editor.
(help cedit gir en liste over alle mulighetene. Merk at tegnet ^ står for Ctrl-tasten). De fleste kommandoene er knyttet til taster på tastaturet og er derfor innlysende. Dersom du vil ha tilbake en kommando som du har brukt tidligere, kan du trykke på
[image: image2.wmf]­

- tasten. (Trykk flere ganger dersom du ikke finner den du ønsker med en gang). Dersom dette ikke virker, må du først utføre kommandoen cedit on. Dessuten kan du bruke de vanlige Windows-kommandoene Ctrl-C (kopier), Ctrl-V (lim) og Ctrl-X (slett). Du kan blanke skjermen ved å utføre kommandoen clc. En annen nyttig er more i forbindelse med lange utskrifter (help more).

Vi kan knytte navn til de enkelte uttrykkene.
Eks. : a = sin(1)

 b = cos(1)

 c = a + b

Vi kan også skrive dette på en linje ved :
a = sin(1) ; b = cos(1); c = a + b;

Legg merke til at nå får vi ingen utskrift. Semikolon brukes til å hindre utskrift. Dette er viktig for å hindre utskrift av mellomregning vi ikke er interessert i. Dessuten brukes semikolon til å skille uttrykk på samme linje.

Strenger
Strenger er en samling med tegn mellom to apostrofer.
Eks. : Utfør str = 'Dette er en streng'
Srengvariable brukes helst ved programmering og ofte ved innlesning, utskrift og plotting. Du kan transformere strengen til et tall ved x = double(str)
Hvert tegn får nå den verdien den har i den såkalte ASCII-tabellen.
Går tilbake til en streng ved str = char(x). Vi kan f.eks sette sammen to strenger s1 og s2 ved kommandoen strcat(str1,str2).
Forsøk med str1 = 'Dette er ' og str2 = 'en streng'
Utfør a = '3.141592'. Dette er en streng , ikke en tilnærmelse til pi.
a kan konverteres til et tall ved b = eval(a). Kontroller dette ved å utføre whos.
Det finnes mange flere strengfunksjoner enn dem vi har brukt ovenfor.
Prøv help strfun.

Komplekse tall
i og j brukes som den komplekse enheten
[image: image3.wmf]1

-

.
Utfør z1 = 2 + i*3 og z2 = 3 - i*4.
Utfør deretter z1 + z2 , z1*z2, z1/z2.
De komplekse funksjonene finnes ved help elfun

Bruk av innebygde matematiske funksjoner.

Du finner en liste over de vanlige matematiske funksjonene ved kommandoen help elfun. (Start med help help om nødvendig)
Prøv endel av funksjonene , også de mer ukjente. Bruk help for å finne den nøyaktige syntaksen. Forsøk eks. fix(2.1), floor(-2.1), ceil(2.1) , round(-2.1) og se om resultatet stemmer med beskrivelsen.

Utfør f.eks. exp(1),sin(pi/2), tan(pi/2), atan(1), atan2(1,-1)

Legg merke til at pi er innebygd i Matlab, se side 3 i Matlablefsa.

Vær klar over at når du f.eks. skriver help sin, vil du få referansen skrevet med store bokstaver; i dette tilfellether SIN(X). Dette er gjort for at svaret skal vise tydelig på skjermen, ikke at du skal bruke store bokstaver. Matlab skiller mellom store og små bokstaver. Vanligvis brukes små. (Utfør f.eks. kommandoen HELP)

I mange tilfeller har vi bruk for raskt å plotte funksjoner. Dette gjøres greit med kommandoen fplot. (Mer detaljer med help fplot).
Utfør f.eks. fplot('sin(x)', [0 2*pi]). Merk apostrofene rundt funksjonsnavnet. Det blir nå åpnet et eget figur-vindu. Null-punkter er lettere å plukke ut ved å legge på et nett med kommandoen grid on. (Eksempel på mer avansert plotting finnes side 32-34 i Matlablefsa)

La oss se på mer "eksotiske" funksjoner. Disse finnes med help specfun.
Vi ønsker å plotte funksjonen
[image: image4.wmf]0

()

Jx

 for
[image: image5.wmf]010

x

££

 der
[image: image6.wmf]0

()

Jx

 er en Besselfunksjon av 1. orden og nullte slag. Fra lista finner vi besselj som ifølge beskrivelsen er en Besselfunksjon av første slag. (Dersom du på forhånd visste at dette var en Besselfunksjon, kan du skrive help bessel). For å få flere detaljer, skriver vi help besselj Ifølge beskrivelsen får vi en Besselfunksjon av 1. slag og orden
[image: image7.wmf]n

 med argument x ved å bruke besselj(nu,x).
Vi utfører derfor følgende: fplot('besselj(0,x)', [0 10]).
Fra figuren finner vi nullpunkter rundt x = 2.4 , 5.5 og 8.6.

Vi vil nå bestemme disse nullpuntene nøyaktig ved å bruke Matlabfunksjonen fzero. (help funfun). Det første nullpunktet finner vi ved å utføre fzero('besselj(0,x)',2.4) og resultatet er 2.4048. (Dersom vi bruker format long får vi 2.40482555769577)
Finn også de to andre nullpunktene. (En mer detaljert beskrivelse av fzero er gitt i lefsa side 24).

Når vi først er i gang, kan vi også beregne noen bestemte integral.
La oss integrere sin(x) fra 0 til 90º der svaret (selvfølgelig) er 1
Utfører help funfun og finner Matlabfunksjonen quad.
Utfra beskrivelsen, utfører vi quad('sin',0,pi/2) som gir 1.0000
Legg merke til at vi utførte help funfun for å finne et program som utførte integrasjonen. Hva skulle vi ha gjort dersom vi ikke visste at quad kunne finnes her? Det mest naturlige er å forsøke help integral. Dersom vi gjør det, får vi som svar integral.m not found. Vi har heldigvis kommandoen lookfor.
(Utfør help lookfor for flere detaljer). Dersom vi utfører lookfor integral, får vi bl. annet :

QUAD Numerically evaluate integral, low order method.

QUAD8 Numerically evaluate integral, higher order method.

Ved å bruke help quad, får vi flere opplysninger.

Matriser og vektorer

Gå gjennom side 5- 12 i Matlablefsa. Om du ikke går gjennom alt , så forsikre deg ihvertfall om at du kan skrive inn matriser og vektorer og kan kan utføre de vanligste matriseoperasjonene.

Bruk av editor ved programmering.

Velg file i menyen, deretter new og velg M-file. Du er nå klar til å skrive et program med den innebygde editoren. Skriv inn programmet som er gitt
nedenfor :

%=== Program poly2 ===

% Finner de reelle røttene av ligningen Ax^2+Bx + C

a = input('Les koeffisient A: ');

b = input('Les koeffisient B: ');

c = input('Les koeffisient C: ');

d = b^2 - 4*a*c;

if d > 0 % To reelle røtter

 x1 = (-b + sqrt(d))/(2*a);

 x2 = (-b - sqrt(d))/(2*a);

 fprintf('x1 = %f\n',x1)

 fprintf('x2 = %f\n',x2)

elseif d == 0 % En reell rot

 x1 = -b/(2*a);

 fprintf('x1 = x2 = %f\n',x1)

else % Imaginære røtter

 fprintf(' === Ingen reelle røtter ===\n')

end

Når programmet er skrevet, må det lagres. Velg Save As på fil-menyen og lagre det under navnet poly2. Matlab legger automatisk til endelsen m.
Work-mappa er en grei plass som temporær lagring av et program dersom du er på datasalen. Dersom du ønsker å ta vare på programmet, må det overføres til mappa di på filserver. Etter at programmet er lagret, kan det eksekveres i kommandovinduet ved å utføre poly2. Du kan teste det på følgende eksempler :

[image: image8.wmf]2

2

2

560

440

250

xx

xx

xx

++=

++=

++=

Du kan nå gå videre med programmeringsdelen i Matlablefsa.

Litt om feilfinning i program

Svært ofte vil det være feil i et program første gangen det brukes. Feilskrift er typisk. Dette fører til syntaksfeil som blir oppdaget av Matlab. Feil bruk av språket generelt fører også til syntaksfeil. I begynnelsen kan det ofte være vanskelig å finne ut hva Matlab mener når den påpeker feil, men det kommer med litt øvelse. Når syntaksen er i orden, kommer de logiske feilene : Programmet gjør ikke det du ønsker. I praksis betyr dette at du må be programmet skrive ut mellomregning som du normalt ikke er interessert i.
I programmet ovenfor kan du f.eks. skrive ut størrelsen d ved å fjerne semikolonet etter den linja der d er definert. Husk at du kan finne slutt-verdiene av de størrelsene som er beregnet i programmet ved å utføre de aktuelle variable i kommandovinduet. I noen tilfeller ønsker du å teste ut en del av programmet fordi du vet at resten ikke funker. En vanlig teknikk er å sette kommentartegn (%) foran de linjene du ikke vil ha utført. Du kan stoppe eksekveringen av et program ved å legge inn kommandoen break. Men da break bare virker som stoppkommando utenfor løkker, er det ofte lurere å sette stopp-punkt
(breakpoints). Dette gjøres i editoren ved å gå til den linja i programmet der du ønsker å stanse, klikke med høyre musetast og deretter velge Set/Clear breakpoint. Eventuelt gå til den aktuelle linja og trykke F12. Stopp-punktet markeres ved et rødt punkt helt til venstre på linja. Gå til kommandovinduet og eksekver programmet. Editorvinduet åpnes og en gul pil viser seg der stopp-punktet er satt. Ved å gå til Debug på menylinja, kan du velge enrekke alternativer. f.eks. eksekvere linje for linje ved å trykke F10.

_1042288554.unknown

_1042361707.unknown

_1042363620.unknown

_1042026351.unknown

_1042026412.unknown

_1042021498.unknown

_1042026224.unknown

