
MATLAB Primer

 2000
John F. Patzer II

MATLAB: Getting Started page 2

MATLAB: Getting Started

• MATLABTM, which stands for MATrix LABoratory, is a product of The Mathworks, Inc.
 MATLAB is a platform independent (meaning it should work equally well on a PC, a MAC, or a
mainframe system), interactive environment for computation, visualization, and animation. MATLAB
has a “natural language” interface that is easy to use. It also has built-in functions and toolboxes that
that help facilitate problem solution and graphical visualization of problems. MATLAB is especially
powerful in the solution of linear algebra (matrix) problems.

• The mathematics that you typically learn in math class is called symbolic because it typically
involves rearrangement and manipulation of symbols to find solutions. MATLAB, however, uses
numerical methods to solve the same types of problems. The solutions generally end up being the
same, but the method of arriving at them differs.

• Windows - MATLAB uses three main windows for communication
 • Command Window - main communication screen
 You can scroll up and down through this screen, which records your commands and the

results of your commands
 » MATLAB prompt - where the next command is typed
 ↑, ↓ MATLAB command buffer, scroll through previous commands
 help type help topic to access online help on a topic
 lookfor lookfor topic will search the MATLAB libraries for matching phrases
 % comment delimiter; MATLAB ignores everything on a line after the % symbol
 ; suppress immediate output display
 • Graphics Window - displays plots, animation, etc
 More than one graphics window can be open at a time.
 • Edit Window - simple text editor
 Used to create, edit, and store your own programs (called scripts).

• MATLAB diary command
 A useful command that will create a text log of your command window screen session in a file
that you specify. The log can then be accessed using your favorite text editor. It can be edited to
remove errors. The edited file can be saved to archive your work. The edited version can also be made
into script files (more later) or function files (more later). The diary can be turned on and off at will
during a session.
 diary filename % set and open filename (with path) for archive file
 example: » diary c:\temp\prob4_3.txt
 diary off % turn off diary record
 diary on % turn diary record back on with previous filename

• MATLAB save filename command
 Occasionally, you might want to pause in the middle of a MATLAB session. To save the
variables you have generated and not have to reenter them, you could use the save filename
command. MATLAB will save your variables for later use. You can reload the variables with the
load filename command. Note: this command pair only saves and loads the variables that are in
the workspace - not the dialogue. The workspace is saved in binary (not text) format so that you cannot
use a text editor to examine the contents. If you want to review the dialogue, you must use the diary
command.

MATLAB: Getting Started page 3

• MATLAB mathematics
 • Variable names: variable names must begin with a letter. Variable names can have any

combination of letters, numbers, and underscores, _ (the shift- key). Although they can be any
length, MATLAB only retains and recognizes the first 19 characters. Finally, MATLAB is case
sensitive. That means that a is not the same as A. Variable names should be meaningful,
reflecting its use in the problem you are solving.

 • Data type: all MATLAB values are complex and double precision. Double precision means

that, depending upon the computer, 15-18 significant figures are retained by the computer and
used in computations. Complex values are generically represented as (a+b*i) where a is the real
part, b is the imaginary part, and i is 1− . Values entered without the b*i component are treated
as real numbers (MATLAB recognizes that b = 0).

• MATLAB screen display
 • Result display: MATLAB displays the results of every command (data input, declaration, or

calculation) immediately after each time the return (or enter) key is used. Sometimes, such
immediate display is not desired. The immediate display can be suppressed by using the
semicolon, ;, at the end of a line before pressing the return key.

 • Display format: MATLAB uses double precision arithmetic internally (retaining all significant
digits to the double precision limit). The display is controlled by the format command as
follows. The default display (if you do nothing) is short.

 format Default. Same as short.
 format short Scaled fixed point format with 5 digits.
 format long Scaled fixed point format with 15 digits.
 format short e Floating point format with 5 digits.
 format long e Floating point format with 15 digits.
 format short g Best of fixed or floating point format with 5 digits.
 format long g Best of fixed or floating point format with 15 digits.

• MATLAB help facility
 MATLAB has a reasonably good help facility. Typing help on the command line produces the
following display

HELP topics:

workarea\matlab - (No table of contents file)
matlab\general - General purpose commands.
matlab\ops - Operators and special characters.
matlab\lang - Programming language constructs.
matlab\elmat - Elementary matrices and matrix manipulation.
matlab\elfun - Elementary math functions.
matlab\specfun - Specialized math functions.
matlab\matfun - Matrix functions - numerical linear algebra.
matlab\datafun - Data analysis and Fourier transforms.
matlab\polyfun - Interpolation and polynomials.
matlab\funfun - Function functions and ODE solvers.
matlab\sparfun - Sparse matrices.
matlab\graph2d - Two dimensional graphs.

MATLAB: Getting Started page 4

matlab\graph3d - Three dimensional graphs.
matlab\specgraph - Specialized graphs.
matlab\graphics - Handle Graphics.
matlab\uitools - Graphical user interface tools.
matlab\strfun - Character strings.
matlab\iofun - File input/output.
matlab\timefun - Time and dates.
matlab\datatypes - Data types and structures.
matlab\winfun - Windows Operating System Interface Files
matlab\demos - Examples and demonstrations.
images\images - Image Processing Toolbox.
images\imdemos - Image Processing Toolbox -demos/sample images
toolbox\rtw - Real-Time Workshop
rtw\rtwdemos - (No table of contents file)
signal\signal - Signal Processing Toolbox.
signal\siggui - Signal Processing Toolbox GUI
signal\sigdemos - Signal Processing Toolbox Demonstrations
toolbox\optim - Optimization Toolbox.
toolbox\control - Control System Toolbox.
control\ctrlguis - Control System Toolbox - GUI support functions.
control\obsolete - Control System Toolbox -- obsolete commands.
toolbox\sb2sl - SystemBuild to Simulink Translator
stateflow\sfdemos - Stateflow demonstrations and samples.
stateflow\stateflow - Stateflow
simulink\simulink - Simulink
simulink\blocks - Simulink block library.
simulink\simdemos - Simulink 3 demonstrations and samples.
simulink\dee - Differential Equation Editor
toolbox\tour - MATLAB Tour
MATLABR11\work - (No table of contents file)
toolbox\local - Preferences.

For more help on directory/topic, type "help topic".

 More information about any of the topics can be obtained by typing help topic on the
command line. For example, help elfun produces the elementary math functions display

 Elementary math functions.

 Trigonometric.
 sin - Sine.
 sinh - Hyperbolic sine.
 asin - Inverse sine.
 asinh - Inverse hyperbolic sine.
 cos - Cosine.
 cosh - Hyperbolic cosine.
 acos - Inverse cosine.
 acosh - Inverse hyperbolic cosine.
 tan - Tangent.
 tanh - Hyperbolic tangent.
 atan - Inverse tangent.
 atan2 - Four quadrant inverse tangent.
 atanh - Inverse hyperbolic tangent.

MATLAB: Getting Started page 5

 sec - Secant.
 sech - Hyperbolic secant.
 asec - Inverse secant.
 asech - Inverse hyperbolic secant.
 csc - Cosecant.
 csch - Hyperbolic cosecant.
 acsc - Inverse cosecant.
 acsch - Inverse hyperbolic cosecant.
 cot - Cotangent.
 coth - Hyperbolic cotangent.
 acot - Inverse cotangent.
 acoth - Inverse hyperbolic cotangent.

 Exponential.
 exp - Exponential.
 log - Natural logarithm.
 log10 - Common (base 10) logarithm.
 log2 - Base 2 logarithm and dissect floating point number.
 pow2 - Base 2 power and scale floating point number.
 sqrt - Square root.
 nextpow2 - Next higher power of 2.

 Complex.
 abs - Absolute value.
 angle - Phase angle.
 complex - Construct complex data from real and imaginary parts.
 conj - Complex conjugate.
 imag - Complex imaginary part.
 real - Complex real part.
 unwrap - Unwrap phase angle.
 isreal - True for real array.
 cplxpair - Sort numbers into complex conjugate pairs.

 Rounding and remainder.
 fix - Round towards zero.
 floor - Round towards minus infinity.
 ceil - Round towards plus infinity.
 round - Round towards nearest integer.
 mod - Modulus (signed remainder after division).
 rem - Remainder after division.
 sign - Signum.

 Information about how to use any individual function can also be obtained. For example, help
atan produces the display

 ATAN Inverse tangent.
 ATAN(X) is the arctangent of the elements of X.

 See also ATAN2.

which tells us that the atan function takes one argument (either scalar, vector, or matrix) and returns
the value of the arctangent. It also tells us that there is a closely related function, atan2, that may be
useful.

MATLAB: Workshop 1 page 6

MATLAB Workshop 1
 Objectives: Start MATLAB, do some calculations, use some basic functions, change display
format, quit MATLAB.

command line »

arithmetic operators
 + addition - subtraction
 * multiplication / division (left)
 ^ exponentiation

output formats (shown with 10e)
 format short 27.1828 format short e 2.7183e+01
 format long 27.18281828459045 format long e 2.718281828459045e+01

basic trig functions

sin() asin() sinh() asinh()
cos() acos() cosh() acosh()
tan() atan(), atan2() tanh() atanh()
cot() acot() coth() acoth()
sec() asec() sech() asech()
csc() acsc() csch() acsch()

logarithmic/exponential functions
 exp() log() log10() sqrt()

MATLAB constants
 pi π (=3.14159...) inf ∞ (infinity)
 i or j imaginary unit (1−) eps machine (computer) precision
 realmax largest real number realmin smallest real number

• Start MATLAB and perform the following

» 1+3
ans =
 4

»
» a = 4-3
a =
 1

»
» % calculate area of circle
» radius = 5;
» area = pi*radius^2
area =

Enter 1+3 and hit return (enter key). The result is calculated and displayed. If the calculation is
unassigned, the result is saved in the default variable ans.

You can choose the variable name to which a value is assigned.

MATLAB: Workshop 1 page 7

 78.5398

E

1.

% can be used to add comments to your work. Display can be suppressed with a ; at the end of a line to
create a more readable screen display. pi is a MATLAB defined constant (3.14159...).
»
» angle_deg = 30;
» sin1 = sin(angle_deg)
sin1 =
 -0.9880
»
» sin2 = sin(pi*angle_deg/180)
sin2 =
 0.5000

»
» format long
» angle_deg
angle_deg =
 30
»
» sin2
sin2 =
 0.50000000000000

»
» format short e
» sin1
sin1 =
 -9.8803e-001

» quit

xercises: Perform the following operations in MATLAB.

 Arithmetic operations. Compute the following. Display 5 digits.

a.
13

3
5.2

5.2

−
 compare with

1

5.23
11

−






 −

b. () 3
15

277 2 −
+

− √x can be represented by sqrt(x) or x^0.5 in MATLAB

Trig functions are in radians (not degrees). Using an angle in degrees will produce a wrong result.

The format command controls the display of values (5 digits under short, 15 under long). Integers
are displayed as integers under either. Variable values are display simply by typing the variable name.

Exponential (scientific) notation is denoted by e. e-001 means 10 -001.

End MATLAB session.

MATLAB: Workshop 1 page 8

c. Volume = 3

3
4 radiusπ with radius = 15

1

−π π is pi in MATLAB.

2. Exponential and logarithmic expressions. Evaluate each of the following. Display in 5-digit

scientific notation.

3.

4.

Rec
•
•
•
•

ex is written as exp(x), 10x is written as 10^x, ln(x) is written as log(x), and log10(x) is written
as log10(x) in MATLAB.
a. e5, ln(e5), log10(e5), and log10(105)

b. eπ√33

c. Solve 5x = 23. (Note, by taking logarithms, the solution is x =
)5ln(
)23ln(. Compute this and

verify that it is the correct answer by direct substitution into the original equation. What
happens if you use base 10 logarithms instead of natural logarithms?

Trigonometric functions. Evaluate each of the following. Display in 15-digit scientific notation.

a. 






5
sin π , cos(π), tan(45°)

b. 




+







5
cos

5
sin 22 ππ (What do you think the result should be? Why?)

c. Solve () ()ωω 222 sincos −=t with πω 5.1= .

Machine limits. Evaluate each of the following. Display in 15-digit scientific notation.

a. >> max = realmax greatest magnitude real value permitted
b. >> min = realmin least magnitude real value permitted
c. >> precision = eps machine accuracy (significant digits)

ap: You should have learned
How to do simple arithmetic and function calculations
How to assign values to variables
How to control screen display (no display and appearance of floating point numbers)
Limits of machine precision, size of allowable numbers

MATLAB trig functions are provided at the start of this Workshop. Remember: angle measurements
are in radians!!

MATLAB: Workshop 2 page 9

MATLAB Workshop 2
 Objectives: Use MATLAB to solve engineering problems and archive results.

diary archive capability
 » diary filename %set and open filename (with path) for archive file
 example: >> diary c:\temp\prob4_3.txt
 » diary off %turn off diary record
 turns diary record off
 » diary on %turn on diary record
 turns diary record back on with previous filename

Example 1: Pressure at the bottom of a tank
 Problem Statement: The absolute pressure at the bottom of a liquid storage tank that is vented to
the atmosphere is given by the relation, atmabs PghP += ρ , where Pabs is the absolute pressure, ρ is the
liquid density, g is gravitational acceleration, h is the height of the liquid, and Patm is the outside
atmospheric pressure. Find Pabs in SI units if ρ = 1000 kg/m3, g = 32.2 ft/s2, h = 7 yd, and Patm = 1 atm.

Background: This is a problem in units conversion.

Solution strategy: Convert all units to SI before performing calculation
 ρ is already in SI units.
 need factors: ft_to_m = 0.3048
 yd_to_m = 0.9144
 atm_to_Pa = 1.013•105
 Calculate Pabs

• Start MATLAB and perform the following

» diary c:\temp\wkshop2 example 1.txt (or choose your own path)
»
» % Your Name
» % Your Class
» % Today’s Date
»
» % solution to Workshop 2, Example 1
» format short e
»
» % conversion factors
» ft_to_m = 0.3048; yd_to_m = 0.9144; atm_to_Pa = 1.013e5;
»
» % convert all parameters to SI
» rho = 1000; g = ft_to_m*32.2; h = yd_to_m*7;
» Patm = atm_to_Pa*1;
»
» % calculate Pabs in Pa
» Pabs = rho*g*h + Patm
Pabs =
 1.6412e+005
»
» diary off

An empty return adds white space to your dialogue and makes it easier to read. Indenting (using the
spacebar) also adds whitespace and makes your work easier to read. Comments help inform you and
others of what is happening. More than one statement can be placed on a line! If separated by a
semicolon, ;, the display is suppressed. If separated by a comma, ,, the display follows the first return.

MATLAB: Workshop 2 page 10

Be sure to use the diary off command to close the diary (otherwise, you may lose the diary file).
Use whatever means and text editor with which you are familiar to open the file c:\temp\wkshop2
example 1.txt (or whatever you called it). Note that it contains a listing of all screen display (including
white space and comments) that was entered from the time that the diary was initiated. This record can
be edited (if necessary to remove errors and error statements that might occur), printed, and attached to
a homework, report, or work file as an excellent record of your solution.

Example 2: Spring mechanics
 Problem Statement: A spring has a spring constant of 25 lbf /in. What force is required to stretch
the spring 3 in? How much work is done by the force in stretching the spring 3 in?

Background: From physics and conservation of momentum, the force required to stretch the spring is
given by
 kdF =
and the work performed by the spring is
 2/2kdW =
where F is the force, k is the spring constant, d is the distance, and W is the work.

Solution strategy: Convert all units to SI before performing calculation
 in_to_m = 0.0254
 lbf_to_N = 4.448
 Find F and W by straightforward substitution into the equations.

• Start MATLAB and perform the following

» diary c:\temp\wkshop2 example 2.txt (or choose your own path)
»
» % Your Name
» % Your Class
» % Today’s Date
»
» % solution to Workshop 2, Example 2
» format short e
»
» % conversion factors
» in_to_m = 0.0254; lbf_to_N = 4.448;
»
» % convert k and d to SI
» k = 25*lbf_to_N/in_to_m;
» d = 3*in_to_m;
»
» % calculate F in N and W in J (SI units)
» F = k*d
F =
 3.3360e+002
»
» W = k*d^2/2
W =
 1.2710e+001
»
» diary off

MATLAB: Workshop 2 page 11

Example 3: Light bulb life expectancy
 Problem Statement: The life of an incandescent light bulb has been experimentally determined to
vary inversely as the 12th power of the applied voltage. A rated life of a bulb is 800 hours at 115 V.
What is the life expectancy at 120 V? What is the life expectancy at 110 V?

Background: From the problem statement
 12−= AVL
where L is the expected life of the light bulb (hr), V is the applied voltage (V), and A is the
proportionality constant (hr•V12).

Solution strategy: Find A from L = 800 hours at 115 V. Calculate L at V = 120V. Calculate L at V =
110 V.

• Start MATLAB and perform the following

» diary c:\temp\wkshop2 example 3.txt (or choose your own path)
»
» % Your Name
» % Your Class
» % Today’s Date
»
» % solution to Workshop 2, Example 3
» format short e
»
» % calculate proportionality constant (hr.V^12)
» A = 800*115^12
A =
 4.2802e+027
»
» % expected lifetime at 120 V, hr
» L120 = A*120^-12
L120 =
 4.8005e+002
»
» % expected lifetime at 110 V, hr
» L110 = A*110^-12
L110 =
 1.3638e+003
»
» diary off

Exercises

1. Use MATLAB to solve the following problem.

Problem Statement: A piece of cast iron, which has a density of 450 lbm/ft3, has a very irregular
shape. You need to determine its volume in SI units. To do so, you submerge the specimen in a
cylindrical water tank (d = 0.5 yd). The water rises 8.64 cm above its original level.

MATLAB: Workshop 2 page 12

Background: The volume of the specimen is equal to the volume of displaced water. The
volume of displace water is equal to

 hdV)
4

(
2π=

where h is the rise in water level.
 Need to convert everything to SI units for consistency.

Solution strategy: Convert everything to SI units before calculating V
 Need conversion factors
 yd_to_m = 0.9144
 cm_to_m = 0.01
 (Note: density conversion not needed to find volume!!!!)
 Calculate volume, V

2. Use MATLAB to solve the following problem.

Problem Statement: A pipeline in an oil refinery is carrying oil to a large storage tank. The pipe
has a 20 in internal diameter. The oil is flowing at 5 ft/s. The density of the oil is 57 lbm/ft3.
What is the mass flow rate of oil in SI units? What is the mass and volume of oil, in SI units, that
flows in a 24-hour time period.

Background: Need to be careful about units. By dimensional analysis, the mass flow rate of oil,
M! (kg/s) is
 vAM ρ=!
where ρ is the density (kg/m3), v is the flow speed (m/s), and A is the cross-sectional area of the
pipe (m2). The flows in any time period, T (s), are given by
 TMM != and ρ/MV =
where M is the mass (kg) and V is the volume (m3).

Solution strategy: Convert everything to SI units before proceeding.
 Need conversion factors
 in_to_m = 0.0254
 ft_to_m = 0.3048
 lbm_to_kg = 0.4535
 hr_to_s = 3600
 Make conversions for ρ, v, and d.
 Calculate cross-sectional area, A = πd2/4
 Calculate mass flow rate, M! .
 Calculate total mass in 24 hours, M.
 Calculate equivalent volume, V.

3. Use MATLAB to solve the following problem.

Problem Statement: A researcher proposes to use a hollow wrought aluminum alloy sphere, 500
cm outside diameter with a wall thickness of 3 mm, as a buoy to mark the location of an
underwater research site. Will the sphere float? If so, how high does the sphere rise above the
water?

MATLAB: Workshop 2 page 13

Background: This is buoyancy problem. The sphere will float if its average density is less than
that of water (assume to be 1 kg/L = 1000 kg/m3). Need to calculate mass of aluminum used

 ()33
06 iAl ddM −





= πρ

where M is the mass of aluminum (kg), ρAl is the density of aluminum (= 2800 kg/m3), do is the
outside wall diameter (m), and di is the inner wall diameter (m). The average density, ρave
(kg/m3), is then

 3

6

os
ave d

M
V
M

π
ρ ==

where Vs is the volume of the sphere. If the sphere floats, the volume that it displaces is
equivalent to a volume of water of equal mass, i.e.,
 OHd MV

2
/ ρ=

where Vd is the submerged volume (m3) and ρH20 is the density of water. This needs to be used in
conjunction with the mensuration formula for the volume of a spherical sector,

 hRVh
2

6
π=

 where Vh is the volume (m3) of a sector of depth h (m). If Vd > Vs /2, need to think carefully
about how to use the Vh relation (Why?).

Solution strategy: Make sure all parameters are in SI units.
 Specify parameters: do, di, ρAl, ρH20
 Calculate sphere volume, Vs.
 Calculate mass, M.
 Calculate average density, ρave.
 If ρave > ρH20, sphere sinks; else
 Calculate h.
 Calculate height above water, H = do - h.

4. Use MATLAB to solve the following problem.

Problem Statement: A 10 m, medium carbon steel cable is needed to support a load of 100,000
N. The deflection (elongation) of the cable under the load must be less than 1 cm. Ignoring the
mass of the cable, what cable mass is required to just support the load without permanent
deformation? (E = 207,000 MPa, Sy = 552 MPa, St = 690 MPa, ρ = 7900 kg/m3).

Background: This is a stress-strain problem (S = Ee)

 Stress:
0A

TS = where
4

2

0
dA π=

 S: stress, T: tension, A0: cable cross-sectional area, d: cable diameter

 Strain:
0l
le ∆= where 0lll −=∆

 e: strain, l0: initial cable length, ∆l: change in cable length, l: cable length under load

MATLAB: Workshop 2 page 14

 Mass: Vm ρ= where 4/0
2

0 ldlAV π==
 m: mass, V: cable volume

Solution strategy: Make sure all units are SI. Need to check two limits for stress
 permanent deformation ==> T/A0 < Sy or A0 > T/Sy
 maximum deflection ==> S = T/A0 < Eemax or A0 > T/(Eemax)
 strategy: calculate A0 by both methods
 use larger A0 to compute mass

Recap: You should have learned
• How to create a diary to record your MATLAB session.
• The use of white space and comments to make your sessions more readable.
• How to set up and solve problems with MATLAB

MATLAB: Workshop 3 page 15

MATLAB Workshop 3
 Objectives: Define your working directory, create and use a script file, create and use a function
file.

directory commands
 pwd show current (active) directory
 cd directory_name change current (active) directory to specified directory
 dir, ls list current (active) directory contents
 delete filename delete indicated file from current (active) directory
 what list files in current (active) directory

 » edit invoke MATLAB editor

Script files
 A script file is an external file that contains a sequence of MATLAB statements that perform a
task. Typing the filename executes the task. The purpose of a script file is to group commonly
occurring MATLAB program lines that perform a task under a single name so that they can be
executed by typing a simple command rather than constantly retyping the entire set of lines.
Script files are generally headed by some comment statements that describe the contents of the file.
Typing help filename will display the initial comment lines.
 Script files have a filename extension of ".m" and are often called "M-files". MATLAB will
search the current directory for user-defined (i.e., your) M-files.

Function files
 A user-defined function file can be added to MATLAB’s file vocabulary and invoked (used) in
the same manner as any intrinsic MATLAB function (such as sin and cos). The purpose of a function
is to compute (and retain in defined variables) values. The top line of the file defines the syntax for
the function (more on this later). The next few lines are generally comment lines that describe the
function and how to use it. These lines are displayed when help filename is typed.
 Function files have a filename extension of ".m" and are often called "M-files". MATLAB will
search the current directory for user-defined (i.e., your) M-files.
 There is no way to distinguish between a script file and a function file simply by examining the
file name.

Example 1: Setting the current directory
 Generally, you will want to specify the directory where you are keeping your M-files as the
current directory. This is also a good place to keep the diary files that you create from running
MATLAB. Diary files are a good starting place to use MATLAB commands that you have already
tested to create appropriate script files and function files without having to retype the commands.

• Start MATLAB and perform the following

 » cd c:\temp\ (or choose your own directory - possibly a: if you are using a floppy)
 » pwd
 ans =
 c:\temp

Change current directory. Check to see result.

MATLAB: Workshop 3 page 16

 » diary wkshop3.txt

 You can use the directory commands shown at the start of this workshop to examine or alter the
contents of the directory. Try them!

Example 2: Creating a script header file
 Script files can be generated within MATLAB using the MATLAB header file, as shown here, or
with any text editor. If you use another text editor, be sure to save the file as ASCII text with a .m
extension in your MATLAB file directory.

• Continuing in the same MATLAB session, perform the following

 » edit

 Type the following lines in the text editor window:

% header - a script file to provide a diary header
% file written by your name. last modified today’s date.

disp(‘ ’)
disp(‘your name’)
disp(‘engr 0111’)
disp(date)
disp(‘ ’)

 disp is a MATLAB function that displays the text contained within the parens. Note that the
text is contained within single quotes. date is a MATLAB function that returns the current date.
 After entering the above lines, save the file with the filename header. The MATLAB editor
automatically provides the file extension .m. If you are using a different editor, such as Notepad or
Wordpad, you will need to supply the extension.
 After saving the file, exit the editor (click on the X in the upper right-hand corner).

• Back in the MATLAB Command Window

» help header
header - a script file to provide a diary header
file written by your name. last modified today’s date.

»
» header

your name
engr 0111
current date

Start diary. Note that the full path is not provided, the file will be placed in the current directory.

Invokes MATLAB text editor which pops up in a new window.

help header causes the comment lines up to the first non-comment line in the designated
script/function file to display. You should always identify the purpose of the file, who wrote the file, and
when the file was last modified in your comment section.

MATLAB: Workshop 3 page 17

E

pa
2?
w
w

•

va
th
fa

ex

header alone causes the script file to execute as shown. Now, rather than type in your name, class, and
date each time you run a MATLAB session, you only need type header to accomplish the same purpose.
xample 3: Creating a (constant) function file
A common activity in solving engineering problems is unit conversions so that all variables and

rameters are in consistent (SI?) units. Remember how many times you had to do that in Workshop
 Creating MATLAB function files for the conversion factors would make life a little easier and
ould help avoid errors from possibly mistyping the value of a conversion factor (and not noticing it
hen reviewing your solution).

Continuing in the same MATLAB session, perform the following

» edit

Type the following lines in the text editor window:

function [ft_to_m] = ft_to_m;
% ft_to_m - a function file to for ft to m conversion
% file written by your name. last modified today’s date.

ft_to_m = 0.3048;

Function files are always headed by a line with function function_name;. You will learn
rious possibilities and formats for function_name as we progress. function will always remain
e same. The next few lines describe the function. This particular function assigns the conversion
ctor to the name as shown.

After entering the above lines, save the file with the filename ft_to_m.m. After saving the file,
it the editor (click on the X in the upper right-hand corner).

Back in the MATLAB Command Window

» help ft_to_m
ft_to_m - a function file to for ft to m conversion
file written by your name. last modified today’s date.

»
» length = 2*ft_to_m
length =
 0.6096

» diary off

Invokes MATLAB text editor which pops up in a new window.

Displays the comment lines in your function.

Use of the function name retrieves the appropriate conversion factor. The conversion factor is thus always
available if the function is saved in your MATLAB working directory.

MATLAB: Workshop 3 page 18

Exercises

Create functions for all of the conversion factors that you think you might want to use. Save them in
your MATLAB working directory.

Recap: You should have learned
• How to specify your MATLAB working directory (where you keep MATLAB files).
• How to invoke and use the MATLAB editor.
• How to create, save, and use a simple script file.
• How to create, save, and use a (constant) function file.

MATLAB Workshop 4 page 19

MATLAB Workshop 4
 Objectives: Learn how to declare arrays, do simple array arithmetic, and use array functions in
MATLAB.

array operations array functions
 .* term by term multiplication size(x) determines size of x
 ./ term by term division linspace(a,b,c)
 .^ term by term exponentiation length(y) determines # of elements in y

• Start MATLAB and perform the following

» cd your MATLAB directory
» diary wkshop4.txt
» header
 Display of your header output
»
» p = [2 4 6]
p =
 2 4 6
»
» q = [1, 3, 5, 7]
q =
 1 3 5 7

»
» s = [1; 2; 3]
s =
 1
 2
 3

»
» size(p)
ans =
 1 3

» size(q)
ans =
 3 1

»
» t = [1 3 5];
» u = p + t
u =
 3 7 11

p is a row vector with three elements (values, members). q is a row vector with four elements. Row
vectors are declared by giving them a name and enclosing the elements in square brackets, []. The
elements can be separated by spaces or commas.

s is a column vector with three elements. The elements of a column vector are separated by semicolons.

size() is a MATLAB array function that tells how big an array is. p is an array with 1 row and 3 columns,
i.e., a row vector with three elements. q is an array with 3 rows and 1 column, i.e., a column vector with
three elements.

Arrays of the same size can be added term by term. The result is zi = xi + yi for each element, i.

MATLAB Workshop 4 page 20

»
» v = p + s
??? Error using ==> +
Matrix dimensions must agree

»
» p = 0.5*p
p =
 1 2 3

»
» v = p.*t
v =
 1 6 15

A row vector and a column vector have different size even if they have the same number of elements.
They cannot be added (or subtracted).

A vector can be multiplied by a scalar (the result is multiplying each element by the scalar). Remember, p
was originally [2 4 6] until halved in this step. The result is zi = s * yi for each element, i.
Two vectors of the same size can be multiplied (or divided) term by term using the array arithmetic
operators .* or ./. The result is zi = xi * yi for each element, i.
»
» w = sin(p)
w =
 0.8415 0.9093 0.1411

»
» a = sin(p).*cos(p)
a =
 0.4546 -0.3784 -0.1397

»
» c = linspace(1,9,5)
c =
 1 3 5 7 9

»
» d = 1:5
d =
 1 2 3 4 5

»
» e = 3*sin(2*p).*log10(t.*u)
e =
 1.3015 -3.0020 -1.4589

Functions of vectors are applied term by term, resulting in a vector of the same size. The result is zi =
sin(xi) for each element, i.

Since functions of vectors are also vectors, functions of vectors can be multiplied term by term also. The
result is zi = sin(xi) cos(xi) for each element, i.

A vector with 5 linearly spaced elements between 1 and 9 is easily created using the MATLAB function
linspace.

Contrast linspace with this method of creating a vector. How do they differ?

Complex functions and arithmetic operations with vectors are possible. The result of this one is the same
as ei = 3sin(2pi)log10(ti * ui).

MATLAB Workshop 4 page 21

» diary off
» quit

Exercises: Perform the following operations using array arithmetic where appropriate.

1. Equation of a line. The equation of a line is given by bmxy += where m is the slope (a scalar)

and b is the intercept (also a scalar).

a. Compute the corresponding y-coordinates for the following x-coordinates if m = 3 and b = -1
 x = [1, 2, 3, 5, 8, 13, 21]

b. Compute the corresponding x-coordinates for the following y-coordinates if m = 5 and b = 2.3
 y = [0, 1, 1, 2, 3, 5, 8]

c. Compute the corresponding y-coordinates for the following x-coordinates if m = π/2 and b =

2/π
 x = linspace(0,30,8)

d. Given the equation 2/)sin(3 ttd += , compute the corresponding d-coordinates for
 t = 0:10

2. Vector multiplication, division, exponentiation. Create a vector, g, with 10 evenly spaced

elements starting at 1 and ending at 10. Compute the following with vector operations:

a.)cos(ggh =

b.
1
1

+
−=

h
gz

c.
hg

gs)cos(2

= (try this by squaring g and then by multiplying g times g)

d. Given the equation 2/)5.2/sin(5 tetq −= π , compute the corresponding q-coordinates for
 t = 0:100

3. Parametric equation for a circle. The parametric equation for a circle is)cos(θrx = and

)sin(θry = where r is the radius and θ is the angle of rotation counter-clockwise from the positive
x-axis. Defined this way, x and y satisfy the equation 222 ryx =+ . Show this using MATLAB.
Use linspace to create an angle vector, theta, with values (0, π/3, 2π/3, π, 4π/3, 5π/3, 2π).
Compute the corresponding x- and y-vectors for r = 5. Show that the x- and y-vectors satisfy the
equation of a circle.

Recap: You should have learned
• How to declare a vector
• How to declare a vector with evenly spaced elements (two methods)

MATLAB Workshop 4 page 22

• Arithmetic operations between a scalar and a vector
• Arithmetic operations between two vectors
• Simple function operations with a vector
• Arithmetic operations between functions of vectors

MATLAB: Workshop 5 page 23

Create 1000 evenly spaced (x,y) coordinates in the range [0,4π]. plot launches the Graphics Window,
showing an (x,y) plot of the vectors, with default scaling and limits on the axis.

Basic annotation of your plot.

MATLAB Workshop 5
 Objectives: Create a simple graph using MATLAB, save your workspace, create a script for
plots.

 Frequently, we want to visually examine the behavior of a function (equation) or look at a
graphical display of data that we have acquired. MATLAB provides some useful plotting/graphing
tools for this purpose.

MATLAB plot functions
 plot(x,y,s) Plot with linear (x,y) axes; line type specified by string s
 semilogy(x,y,s) Plot with linear x, logarithmic y axes; line type specified by string s
 semilogx(x,y,s) Plot with logarithmic x, linear y axes; line type specified by string s
 loglog(x,y,s) Plot with logarithmic (x,y) axes; line type specified by string s

Example 1: Plotting a simple graph

• Start MATLAB and perform the following

» cd your MATLAB directory
» diary wkshop5a.txt
» header
 Display of your header output
»
» x = linspace(0,4*pi,1000);
» y = sin(x);
» plot(x,y)

»
» xlabel(‘x’)
» ylabel(‘y’)
» title(‘plot of sin(x) vs x’)

»
» diary off

 Congratulations! You have just created your first graph of a function using MATLAB. Simple
graphs are easy! How about plotting some data? Unlike an equation or function, which we want to
display as a continuous line, data needs to be displayed as discrete points.

Example 2: Plotting data
 An environmental engineer has obtained the laboratory measurements shown in the table below
for settling of solids in a holding pond. As a first step in analyzing the information, she would like to
display the data in a simple graph.

MATLAB: Workshop 5 page 24

Enter the data as vectors (note the meaningful names). This time, specify the type of “line” plot uses.
What must the default line type for plot be? Note: your prior graph has been replaced!!!

Solids settling: agglomeration as a function of time

Time, min 1 5 10 15 20 1 5 10 15 20
Mass, kg 0.12 4 16 33 61 0.19 3.5 14 35 58

• Back in MATLAB

» diary wkshop5b.txt
» header
 Display of your header output
»
» time = [1,5,10,15,20,1,5,10,15,20];
» mass = [0.12,4.0,16,33,61,0.19,3.5,14,35,58];
» plot(time,mass,‘*’)

»
» xlabel(‘time, min’)
» ylabel(‘mass, kg’)
» title(‘mass settled as a function of time’)

Example 3: Saving your workspace
 You are now starting to invest some “effort” in creating a MATLAB solution to your problem.
What happens if you need to leave the computer for a while? Do you need to reenter all your data from
scratch before proceeding? The answer is no. When you come back to the computer, you could edit
your diary file and run it as a script. Another option is to use the save command.

• Back in MATLAB

» who
Your variables are:
mass time x y

»
» save agglom_data
» diary off
» quit

 The save command saved your variables and values in your current directory in a binary file
called agglom_data.mat . Check to see that the file is there. If you were to open it with a text editor,
such as Notepad, you would see garbage. That is because the information is stored in a binary, not text,
format. However, MATLAB knows how to read the file.

• Restart MATLAB and perform the following

» cd your MATLAB directory

Annotate your plot.

Check to see what variables are active in your workspace.

MATLAB: Workshop 5 page 25

» load agglom_data
» who
Your variables are:
mass time x y

MATLAB has reloaded your workspace variables and values. Check to see that the values are there by
typing mass or time at the command prompt. Note that the “text” associated with your session has
not been saved - only the variables and their values. If you want the text, you need to review your
session diary.

Example 4: Creating a script for graphs
 The need to visualize functions and data occurs so frequently that having a script file available to
accomplish the task would be advantageous. The problem is that vectors, axis labels, and plot titles are
unique to a given plot - that is, they change with each plot. How can a single script file handle such
varied needs? By asking the user!

• Back in MATLAB

» diary wkshop5c
» edit

When the MATLAB Editor pops up, enter the following script file

% myplot - create an (x,y) plot with labels and title
% created by your name. last modified today’s date.

% get plot information
 disp(‘ ‘)
 xvector = input('what is the x-vector? ==> ');
 yvector = input('what is the y-vector? ==> ');
 xlabelname = input('what label for the x-axis? ==> ','s');
 ylabelname = input('what label for the y-axis? ==> ','s');
 titlename = input('what title? ==> ','s');
 disp(‘what line type?’)
 disp(‘ 1 = solid’)
 disp(‘ 2 = dashed’)
 disp(‘ 3 = *’)
 linetype = input(‘line type? ==> ');

% assign line type
 if linetype == 1
 plotline = '-';
 elseif linetype == 2
 plotline = '--';
 else
 plotline = '*';
 end

% create plot
 plot(xvector,yvector,plotline)
 xlabel(xlabelname)
 ylabel(ylabelname)

MATLAB: Workshop 5 page 26

 title(titlename)

Note the indenting and use of white space in creating this file. Comments head sections of commands
that are indented under the comment. Using white space and comments make your script files easy to
read, understand, and edit, if necessary. The script file uses some “programming language” constructs,
e.g., the if...elseif construct, that you will learn more about. It also uses a MATLAB specific function,
input, that allows the user to define exactly what vectors and labels to use in the plot. Save the script
file as myplot.m .

• Back in MATLAB

» help myplot
myplot - create an (x,y) plot with labels and title
created by your name. last modified today’s date.

»
» myplot
what is the x-vector? ==> time
what is the y-vector? ==> mass
what label for the x-axis? ==> time, min
what label for the y-axis? ==> mass, kg
what title? ==> agglomeration mass vs time
what line type?
 1 = solid
 2 = dashed
 3 = *
line type? ==> 3

»
» diary off

 If you made errors in creating the script, MATLAB will respond with (ambiguous) error
messages. Simply edit the script file with the text editor, resave it, and then rerun the file.

Exercises: Perform the following operations using array arithmetic where appropriate.

1. Parametric equation for a circle. The parametric equation for a circle is)cos(θrx = and

)sin(θry = where r is the radius and θ is the angle of rotation counter-clockwise from the positive
x-axis. Use linspace to create an angle vector, theta, with 200 equally spaced values in the
range (0, 2π). Compute the corresponding x- and y-vectors for r = 2. Use myplot to display the
resulting (x,y) plot.

 Doesn’t look much like a circle does it? Why? (Hint: look at the scales on the x & y axes.)
Correct the problem by typing the command

 axis(‘equal’)

The MATLAB graphics window reappears with the desired graph.

Before continuing, close the MATLAB Graphics Window (click the X in the upper right corner).

help filename will display the beginning comment lines in a file.

MATLAB: Workshop 5 page 27

 This forces the scales on the x and y axes to be the same.

2. Frequently, plots of data do not yield straight lines

(what shape “curve” did you get from the
agglomeration vs time data?). The reason we plot
data is to obtain a visual idea of the relation between
the dependent and independent variables. The table
at the right identifies which relations have straight-
line plots with the corresponding MATLAB function.

a. Create a script file called mysemilogy that will plot data w

logarithmically-scaled y-axis. (Hint: edit myplot appropri
name.)

b. Create a script file called mysemilogx that will plot data w
and linearly-scaled y-axis.

c. Create a script file called myloglog that will plot data with
axes.

d. Plot the agglomeration vs time data with each of these func
straight-line plot? What is the functional relationship?

3. Plot each of the following relations first with myplot and then

obtain a straight-line result.
a.)1000(25.1 25/ ≤≤= − xey x
b.)5010(25.1 5.2 ≤≤= xex y
c.)1000(2 5.1 ≤<= xxy
d.)1010(123 2 ≤≤−+−= xxxy
e.)100()2/sin(2 2 ≤≤= − xexy xπ

4. Multiple (overlay) plots. Display)2/5.1cos(th π= and g c=

(0 ≤ t ≤ 10) on the same plot. Hint: use myplot to plot the fir
hold on followed by plot for the second. You can learn mo
referring to MATLAB Basic Graphics.

5. As part of a mechanical engineering laboratory, you obtained t

new material. Use MATLAB to plot the data with a green soli

Strain,
(in/in)

Load,
lbf

Strain,
(in/in)

Load,
lbf

S
(

0.0002 900 0.0024 7350 0

0.0004 1600 0.0028 7850 0

0.0006 2350 0.0032 8200 0

0.0008 3150 0.0036 8400 0

0.0010 3900 0.0040 8600

0.0012 4650 0.0044 8700
Relation MATLAB plot
bmxy += plot

bxaey = semilogy

)ln(bxay = semilogx
baxy = loglog
ith a linearly-scaled x-axis and
ately and save it with the new

ith a logarithmically-scaled x-axis

 a logarithmically-scaled x- and y-

tions. Which one produces a

 with the appropriate function to

tet 15.0)2/5.1os(−π in the range
st followed by the command
re advanced plotting techniques by

he following stress-strain data on a
d line connecting red triangles.

train,
in/in)

Load,
lbf

.020 9150

.040 8950

.060 8100

.080 7250

0.10 6300

0.12 5150

MATLAB: Workshop 5 page 28

0.0014 5200 0.0048 8800 0.14 3950

0.0016 5750 0.0052 8900 0.16 2100

0.0018 6300 0.0070 9100 0.17 500

0.0020 6700 0.0100 9200 Fracture

Recap: You should have learned
• How to create simple (x,y), semilogarithmic, and log-log plots.
• How to save and load your workspace.
• How to create a more complex script with screen display and input capability.

MATLAB: Workshop 6 page 29

MATLAB Workshop 6
 Objectives: Understand user-defined MATLAB functions. Use functions for linear regression.
Plot graph with data shown as points and a “best fit” line from linear regression..

User-defined MATLAB functions
 Although MATLAB has a large variety of useful mathematical, matrix manipulation, and
graphics visualization functions, we frequently need to design our own function for a special purpose.
MATLAB provides the capability to do so through its user-defined function.

 The purpose of a user-defined function is to compute one or more values that are required for
solving your problem. Contrast this with a user-defined script, which is a set of instructions to
accomplish a task. Functions are much more restricted in scope because they are designed only to
compute a value(s) - not accomplish a task.

 The generic format for the first line of a MATLAB function file (a .m file), i.e., the function
header, is

 function [out1, out2, out3, ...] = fcn_name(in1, in2, ...);

where out1, out2, out3, etc, are the output values begin calculated by the function. The output
values can be scalars, vectors, or matrices. in1, in2, etc, are input values that are required by the
function to compute the output values. The input values can also be scalars, vectors, or matrices.
function must be lower case; it tells MATLAB that this is indeed a function. The function is saved
in a file named fcn_name.m.

 The lines immediately following the function header are comment lines, started with the
comment delimiter %, that are displayed when help fcn_name is input in the Command Window.
These lines should describe what the function computes, the meaning of the output values list, and the
required input values.

 After a blank line, the remainder of the function script, properly annotated, is directed toward
computing the desired values. Any variable named in the function header is available for use.
Additional variable names can be used for intermediate steps in the calculations. However, these are
local variables that are not available back in the command window. The only values that return to the
command window are those that are in the output values list.

 Functions are accessed from the command window by the statement

 [myout1, myout2, myout3, ...] = fcn_name(myin1, myin2, ...);

where myout1, myout2, myout3, etc correspond to the names you are using for the output values and
myin1, myin2, etc, are the names you are using for the input values. This means that you can use
meaningful names for your current problem in the command window and MATLAB will take care to
make sure that values are calculated properly.

Example 1: Least-squares, linear regression data analysis
 A common activity in developing understanding of experimental results is the use of linear
regression to find a “best fit” relationship between the independent and dependent variables in a data

MATLAB: Workshop 6 page 30

set. Given a data set of n experimental points, (xi,yi), 1 ≤ i ≤ n, the least squares, linear regression
algorithm seeks to find the straight-line fit to the data set that minimizes the sum of the square of the
vertical distances between the data and the straight-line given by

 bmxy += .

The resulting equations for the slope, m, and the intercept, b, are

∑ ∑

∑ ∑∑

= =

= ==






−












−

=
n

i

n

i
ii

n

i

n

i
i

n

i
iii

xxn

yxyxn
m

1

2

1

2

1 11 and ∑
=






−=

n

i
ix

n
myb

1
 where ∑

=

=
n

i
iy

n
y

1

1

The correlation coefficient, r2, given by

SST
SSEr −=12 where ∑

=

−−=
n

i
ii bmxySSE

1

2)(and ∑
=

−=
n

i
i yySST

1

2)(

is another commonly used statistic. The correlation coefficient represents the proportion of total
variability in the data that is explained (accounted for) by the linear fit to the data.

 The following MATLAB function implements the linear regression calculations

function [m,b,rsq] = linreg(x,y);
% linreg - [m,b,rsq] = linreg(x,y)
% determine straight-line fit
% y = mx + b
% and correlation coefficient, rsq, for
% input vectors (x,y)

% local variable definitions
% SX is sum(x), SY is sum(y), SXY is sum(xy)
% SXsq is sum(xsq), Yave is SY/n
% SSE is sum(y-mx-b)_sq, SST is sum(y-yave)

% determine m and b
 n = length(x);
 SX = sum(x);
 SY = sum(y);
 SXY = sum(x.*y);
 SXsq = sum(x.*x);
 Yave = SY/n;

 m = (n*SXY-SX*SY)/(n*SXsq-SX*SX);
 b = Yave-(m/n)*SX;

% determine rsq
 SSE = sum((y-m*x-b).^2);
 SST = sum((y-Yave).^2);

MATLAB: Workshop 6 page 31

Enter data, create basic plot, hold plot. When Edit Window appears, enter function linreg as shown
above. Save function as linreq.m in your MATLAB directory before continuing.

Note that, by placing the “calling” in the definition, you can see how to “call” the function (if you forgot how)
simply by using the help command.

The data vectors, x and y, are the required input data. The function returns m, b, and rsq. The first few
lines following the function definition are comments that describe the function (note they describe both
input data and returned data). These will be displayed when the help linreg command is used. After
a blank line, local variables are defined in comments. Finally, the calculations are performed, with
appropriate comments. Note: Good programming practice is to make liberal use of comments to identify
both variables and actions. Use plenty of whitespace. This will prove invaluable to understanding what
you meant a function to do when you try to use it months after creating it.

Call linreg. Note that you can use variable names of your choice as input and output (you do not need
to use the same names as in the definition. MATLAB will make a one-to-one correspondence between the
names you use and the corresponding use in the function. Placing a suppress output display marker, ;, at
the end of the call would suppress the display (the values would still be calculated and available by
variable name).

 rsq = 1 - SSE/SST;

 An engineer obtained the (time, height) data shown below for the height of a column of water
from duplicate experiments. The engineer wants to create a figure showing the data together with a
linear regression, “best-fit” line for the data.

Column Height as a function of time
Time, min 0 1 3 5 10 15 20 0 1 3 5 10 15 20
Height, cm 0.0 3.2 8.6 15.6 31.2 43.3 57.6 0.0 2.8 9.4 14.1 28.7 46.2 61.1

• Start MATLAB and perform the following

» cd your MATLAB directory
» diary wkshop6a.txt
» header
Display of your header output
»
» time = [enter time data here];
» height = [enter height data here];
» plot(time,height,’*’)
» hold on
» edit

»
» help linreg
linreg - [m,b,rsq] = linreg(x,y)
determine straight-line fit
 y = mx + b
and correlation coefficient, rsq, for
input vectors (x,y)

»
» [slope, intcpt, cor] = linreg(time,height)
slope =
 2.9873
intcpt =
 -0.0023
cor =
 0.9983

MATLAB: Workshop 6 page 32

Add the regression line to the plot. Add a legend. You can now use the menus in the graphics window to
add axis labels, use the text command to add the equation and rsq value, and adjust font displays.

»
» fit = slope*time + intcpt;
» plot(time,fit,‘-’)
» legend(‘data’,‘regression fit’)

»
» diary off
» quit

Example 2: Least squares regression of non-linear functions
 Functions can call other functions to help do their job. For example, we want to find the “best
fit” for data that seems to follow the exponential relation

 yBAey = which can be transformed to)ln()ln(AxBy +=

by taking logarithms of each side. This corresponds to the linear equation bmxy += if we substitute
ln(y) for y, B for m, and ln(A) for b. Thus, we should be able to design a function, semilogy_fit,
that will input data for x and y and return the “best-fit” values for A and B. Such a function is listed
here.

function [A,B,rsq] = semilogy_fit(x,y);
% semilogy_fit - [A,B,rsq] = semilogy_fit(x,y)
% determine A and B parameters for semilog fit to
% y = A*exp(Bx)
% and correlation coefficient, rsq, for
% input vectors (x,y)

% local variable definitions
% log_y = log(y)

% algorithm
 log_y = log(y);
 [B,lnA,rsq] = linreg(x,log_y);
 A = exp(lnA);

Note that the log transformation (taking logs of the input y data) is done inside the function before
calling linreg to find the best-fit values. linreg returns the value of B directly. However, it returns
the value of ln(A) (why?), so that that value needs to be transformed back to A before semilogy_fit
is finished.

Exercises: Perform the following operations using array arithmetic where appropriate.

1. Power law data fit. Sometimes data is best represented by a power law equation of the form

 BAxy = which can be transformed to)ln()ln()ln(AxBy +=

 Design a function, loglog_fit, that will compute the best-fit values for A and B given an (x,y)

data set.

MATLAB: Workshop 6 page 33

2. Exponential (x) data fit. Sometimes data is best represented by a power law equation of the form

 yBAex = which can be transformed to)ln()ln(AyBx +=

 Design a function, semilogx_fit, that will compute the best-fit values for A and B given an

(x,y) data set.

3. An environmental engineer has obtained the laboratory measurements shown at the right for

settling of solids in a holding pond. Use your graphing and curve fitting capabilities to find a
reasonable “best-fit” for the data. You should create a well-annotated graph, with appropriate
legend, that shows the data and best fit to the data. Put the best fit equation and rsq values on the
graph.

Agglomeration as a function of time
Time, min 1 5 10 15 20 1 5 10 15 20
Mass, kg 0.12 4 16 33 61 0.19 3.5 14 35 58

 Hint: make a basic plot of the data first. Use the axes properties menu in the graphics window to

change the axes type (linear or log) to find which equation appears to best represent the data
before using your curve fitting routines.

4. An bioengineer has obtained the data shown below for bacterial growth in a culture. Use your

graphing and curve fitting capabilities to find a reasonable “best-fit” for the data. You should
create a well-annotated graph, with appropriate legend, that shows the data and best fit to the
data. Put the best fit equation and rsq values on the graph.

Bacterial count as a function of time

Time, hr 1 3 5 7 9 12 16 20 30 50
Count, 103/mL 1 1.4 1.5 1.9 2 2.5 3.6 4.9 11.1 54.4

 Hint: make a basic plot of the data first. Use the axes properties menu in the graphics window to

change the axes type (linear or log) to find which equation appears to best represent the data
before using your curve fitting routines.

5. The Stefan-Boltzmann radiation law states that the energy radiation flux, R (J/s), from a hot

object varies as
)(44

oTTAR −= σ
 where σ is the Stefan-Boltzmann constant, A (m2) is the object surface area, T (K) is the object

temperature, and To (K) is the surrounding (room) temperature. An engineer collected the data at
the right for a 0.01 m2 object. Use the data to determine a value for σ and the surrounding room
temperature. (The accepted value for σ is 5.670±0.003•10-8 W/(K•m2).)

Energy radiated as a function of temperature

T, K 300 350 400 450 500 550
R, W 0.4 4.3 10.5 19.2 31.5 47.5

Recap: You should have learned

MATLAB: Workshop 6 page 34

• How to define functions in MATLAB.
• How to “call” functions in MATLAB.
• How to use linear regression in MATLAB to find the “best fit” for data.
• How to create a figure showing data and the best fit curve in MATLAB.

MATLAB Workshop 7 page 35

MATLAB Workshop 7
 Objectives: Use MATLAB for functional analysis - graphing of equations, finding minima and
maxima, finding roots of equations, solving first order ordinary differential equations.

Example 1: Functional Analysis - Minimum or Maximum
 Consider the common tin can, as illustrated at the right.
The tin can is comprised of two circular ends capping a right
circular cylinder. The individual pieces are made from flat
sheet materials as shown in the exploded view. α represents
the additional material needed to make the vertical seam on
the right cylinder. β represents the additional material needed
to make the end welds or seals. The amount of material
needed to make a can is given by the equation

)()
2

(2))(2)((2 tdthdM ρβπρβαπ ++++=

where
 M : mass of material, kg
 d : can diameter, m
 α : excess for vertical seam, m
 h : can height, m
 β : excess for end seams, m
 ρ : material density, kg m-3
 t : material thickness, m
The first term on the right represents the mass of the right cylinde
the contribution of the end caps (hence the factor 2).

 The objective in can design is to use the minimum amount
volume. The volume enclosed by a right circular cylinder is

4

2hdV π=

Substituting this into the equation for M yields

)()
2

(2))(24)((2
2 tdt

d
VdM ρβπρβ

π
απ ++++=

which is an equation in d for a specified M.

 What is the minimum mass of wrought aluminum alloy (ρ
from a sheet 0.5 mm thick that holds 285 mL fluid. What are the
the can? Assume α = 0.2 cm and β = 0.2 cm.

 The first question is what are the relative contributions of th
To answer this visually, use MATLAB to create a graph with thre
the can, the second is the mass of the side, the third is the mass o
script

• Start MATLAB and perform the following

βββ
r section. The second term represents

of material to enclose a specified

= 2800 kg/m3) needed to make a can
 corresponding diameter and height of

e side and two ends to the total mass.
e lines. The first is the total mass of

f the two ends. Consider the following

πdα
β

β

h

β

β

d

β

d

πdα
β

β

h

πdα πdπdα
β

β

h

β

β

d

β

β

d

β

d

β

d

MATLAB Workshop 7 page 36

» cd your MATLAB directory
» diary wkshop7a.txt
» header
 Display of your header output
»
» % set parameters - make sure all SI units
» rho = 2800; vol = 285e-6; thick = 0.005;
» alpha = 0.002; beta = 0.002;
»
» % use diameter as independent variable - range from experience
» diam = 0.01:0.0025:0.10;
» sidemass = ???; (enter appropriate equation - first term of total mass eqn)
» endmass = ???; (enter appropriate equation - second term of total mass eqn)
» totmass = sidemass + endmass;
»
» % create plot
» graph = [sidemass; endmass; totmass];
» plot(diam, graph)
» legend(‘sidemass’, ‘endmass’, ‘total mass’)

This will create a figure similar to the one at the right. Perusal
of the figure shows that the side mass is a decreasing function
of diameter and that the end mass is an increasing function of
diameter. The total mass, which is the sum of the two, has a
minimum. So, the challenge now is to find the minimum.
MATLAB provides the capability to search the vectors for the
minimum or maximum and to determine which element holds
the minimum or maximum. Use help min or help max to
learn more about this capability.

• Back in MATLAB

» % find minimum mass (kg) & index
» [minmass,loc] = min(totmass)
minmass =
 0.3629
loc =
 25
»
» % determine diameter (m) at minmass
» min_d = diam(loc)
min_d =
 0.0700
»
» % calculate height (m)
» height = (4*vol)/(pi*min_d^2)
height =
 0.0741
» diary off

MATLAB has several functions such as min and max that will search a vector for specified elements.
returns from the function can include both a value and index (location) of the value.

MATLAB Workshop 7 page 37

Example 2: Functional Analysis - Roots of Equations
 A counter-current heat exchanger that consists of a tube inserted inside another tube (called the
shell) is a common industrial means to exchange heat between two process streams. As depicted in the
figure, a “cold” fluid, at temperature T1, enters the central tube at one end of the heat exchanger. A
“hot” fluid, at temperature t2, enters the shell-side at the opposite end of the heat exchanger.

 As the cold fluid flows through the inner tube, it gains
heat from the hot fluid by convective and conductive heat
transfer mechanisms. The cold fluid then exits the heat
exchanger at a higher temperature, T2. The hot fluid, which
has lost some heat, exits the heat exchanger at temperature t1.
Because the two fluids are flowing in opposite directions
through the heat exchanger, it is called a counter-current heat
exchanger.

 The design equation for counter-current heat exchange is

 







∆∆
∆−∆

=
)/ln(12

12

TT
TTUAq

where
 q : heat transfer rate, Js-1
 U : overall heat transfer coefficient, Jm-2s-1C-1

 A : outer area of inner tube, m2

 ∆T1 : (t1-T1), temperature difference at cold fluid entranc
 ∆T2 : (t2-T2), temperature difference at hot fluid entrance

 A process engineer needs to reduce the temperature of a “h
°C to 30 °C prior to discharge from the plant. The heat transfer r
is 10,000 Js-1. Cooling water is available at 20 °C. The enginee
can be made available for her use. The heat exchanger design eq
combination is

 







∆∆
∆−∆=

)/ln(
650

12

12

TT
TTq

 Can the heat exchanger be used for this purpose and, if yes,
temperature?

 Since three of the four temperatures are known, we are seek
some temperature for T2 between 20 and 84 °C that provides 10,0
bound, 20 °C, corresponds to so much cooling water moving thr
temperature remains essentially unchanged despite gaining heat f
84 °C, corresponds to the cooling stream coming into near therm
stream. Why not use 85 °C?

• Back in MATLAB

» diary wkshop7b.txt
» header
Hot
out t2
Hot
out t2
e, C
, C

ot” treated waste water stream from 85
ate required to achieve this reduction
r has found an idle heat exchanger that
uation for the process stream

 what is the cold stream exit

ing to determine whether there is
00 Js-1 heat removal. The lower

ough the heat exchanger that its
rom the hot stream. The upper bound,
al equilibrium with the entering hot

���
��� Cold

in
T1

T2

Cold
out

Hot
out

t1

���
��� Cold

in
T1

T2

Cold
out

Hot
out

t1

MATLAB Workshop 7 page 38

 Display of your header output
»
» % set parameters - make sure all SI units
» T1 = 20; t1 = 30; t2 = 85; UA = 650; DelT1 = t1-T1;
»
» % define heat exchange function - use inline
» heatex = inline(‘UA*((t2-T2)-DelT1)/log((t2-T2)/DelT1)’, ...
 ‘T2’,‘UA’,‘t2’,‘DelT1’);
heatex =
 Inline function:
 heatex(T2,UA,t2,DelT1) = UA*((t2-T2)-DelT1)/log((t2-T2)/DelT1)

»
» % set up graph
» T2range = 20:84;
» i = 1;
» for T2=20:84
 q(i) = heatex(T2, UA, t2, DelT1);
 i = i+1;
 end

Warning: Divide by zero.
> In D:\MATLABR11\toolbox\matlab\funfun\@inline\subsref.m at line 25

»
» % create plot
» plot(T2range,q)
» xlabel(‘Cold Outlet Temp, C’)
» ylabel(‘Heat flow, J/s)’
»

 Looking at the graph, the heat exchanger is capable of removing between about 3,000 and 19,000
Js-1 for this process. So, the question now becomes, what is the outlet cold temperature for the process
if it removes 10,000 Js-1? That is , we are seeking the solution to

 010000
)/ln(

650
12

12 =−







∆∆
∆−∆

=
TT
TTq

Before proceeding, use your favorite text editor to create the following residual function

function [resid] = qfcn(T2,UA,t2,DelT1,heatflow);
% qfcn evaluates residual of counter-current heat exchange equation
% resid = UA*((t2-T2)-DelT1)/log((t2-T2)/DelT1) - heatflow
% requires T2, UA, t2, DelT1, heatflow
% returns residual

The inline function can be used to create a function in the current workspace rather than write a
function and save it as an .m file. Note that the function and its arguments (parameters) are all contained
in single quotes (strings). The independent variable is the first argument listed. The other arguments can
be in any order. MATLAB responds by showing the function definition. Learn more by typing help
inline on the command line.

Example of using a for loop to create a vector. Run it without the ; to see term-by-term calculations.
The “call” to heatex looks identical to the call that would be made if heatex were a function in a .m file
rather than one defined by the inline function.

A warning about division by zero. WHY?

MATLAB Workshop 7 page 39

% calculate residual
 resid = UA*((t2-T2)-DelT1)/log((t2-T2)/DelT1) - heatflow;

and save it as qfcn.m in your MATLAB directory.

• Back in MATLAB

» % find root of equation using .m file function
» T2out = fzero(‘qfcn’,50,optimset,UA,t2,DelT1,10000)
Zero found in the interval: [34, 66].
T2out =
 62.5767

»
» % find root of equation using inline function definition
» qfcn2 = inline(‘UA*((t2-T2)-DelT1)/log((t2-T2)/DelT1)- heatflow’,...
 ‘T2’,‘UA’,‘t2’,‘DelT1’,‘heatflow’)
qfcn2 =
 Inline function:
 qfcn2(T2,UA,t2,DelT1,heatflow) = UA*((t2-T2)-DelT1)/log((t2-
 T2)/DelT1)-heatflow
»
» T2out = fzero(qfcn2,50,optimset,UA,t2,DelT1,10000)
Zero found in the interval: [34, 66].
T2out =
 62.5767

» diary off

 Roots of equations are found by putting the equation into the form
 0)(=xf
and searching for the value of x that makes the equation true. The MATLAB function fzero can be
used. fzero requires that you have an initial guess for the location of the root. The initial guess is
most accurate if you have a graph of the equation and can see about where it crosses the axis. This
technique can be extended to finding minimums and maximums of equations because of the relation

 0=
dx
df at a minimum or maximum.

Example 3: ODE integration
 The diagram to the right depicts a common industrial
situation that involves flow into and out of a storage tank.
The storage tank has diameter D (m) and height H (m). The

If an inline function is used, the function name is not enclosed in quotes.
QinQinQin
The root of the equation f(x) = 0 is found with fzero. The arguments inside the parentheses are, in
order, the function name (enclosed in single quotes if an .m file), an initial guess for the root, optimset,
and the parameters required by the function, in the same order as the function definition. Note: if the
function has no parameters, e.g. f(x) = sin(x) - x, a simpler form of fzero can be used:
 root = fzero(fcn_name, initial_guess).
More information can be found by typing help inline at the command line.
H
h

valve

Storage
Tank

Qout

D

H
h

valve

Storage
Tank

Qout

H
h

valve

Storage
Tank

Qout

D

MATLAB Workshop 7 page 40

fluid level inside the tank is h (m). Fluid is flowing into the tank at rate Qin (m3/s). Fluid is flowing out
of the tank through an outlet valve at rate Qout (m3/s). The question is what is the fluid level, h, as a
function of time?

 Application of the principle of conservation of mass produces the ordinary differential equation

 00:.. ttathhci
A

ghCQ
dt
dh vin ==

−
=

ρ

which describes the height as a function of time. Cv is the valve coefficient which describes flow
through the valve, ρ is the fluid density (kg/m3), g is gravitational acceleration (m/s2), and A is the
cross-sectional area of the tank (m2).

 MATLAB can be used to solve the equation and find the height as a function of time in the
following manner.
 1) Write a function that returns the derivative as a function of time and height (independent and
dependent variables). Note that both the independent and independent variables, in that order, must be
in the argument list. The following script is suitable for the present problem (it should be saved as
tankflow.m in your MATLAB directory):

function dhdt = tankflow(t,h);
% tankflow: flow into and out of a tank
% dhdt = (Qin - Cv*rho*g*h)/A

% specify parameters
 Qin = 0.25; Cv = 3.2e-6; rho = 1000;
 g = 9.8; A = pi*6*6;

% calculate derivative
 dhdt = (Qin - Cv*rho*g*h)/A;

 2) Select one of the many MATLAB functions for integration (ode23, ode45, ode113,
ode15s, ode23s, ode23t, ode23tb). MATLAB has functions that implement different numerical
approaches to ODE integration. The choice of which function to use will depend upon particular
aspects of your problem when rendered into a numerical approach. All of the functions require
specification of the function name (as text or string), a vector containing the initial and final values for
the independent variable, and the initial value of the dependent variable. The following script can be
entered in the command window:

• Back in MATLAB

» diary wkshop7c.txt
» header
 Display of your header output
»
» % specify independent var range, init value
» tspan = [0 15000]; h0 = 6;
» [t,h] = ode23(‘tankflow’,tspan,h0);

ode23 will generate the independent variable vector t and through integration, the corresponding values
of height in the vector h. Omitting the display suppression command on the last statement will cause the t
and h vectors to display.

MATLAB Workshop 7 page 41

 3) Interpret the results. This is most easily done graphically, e.g.,

» plot(t,h);

You can annotate the graph using methods described in the MATLAB Graphics section.

 You should see what differences, if any, result from using one of the other ODE integration
functions. If you simply want to see a graph of the integrated function without capturing the
independent and dependent variable information, you could simply type

» % specify independent var range, init value
» tspan = [0 15000]; h0 = 6;
» ode23(‘tankflow’,tspan,h0);

at the command line (leave off the [t,h] part). A graph showing the integrated function will appear
with the integration points highlighted.

Exercises

1. Problem Statement: A sealed storage tank is partially filled with a solution of polymer in a

solvent. The vapor pressure inside the tank is measured to be 5 atm (absolute). The pure solvent
exerts a vapor pressure of 6 atm (absolute), so the polymer is acting to depress the pressure.
Laboratory experiments have found the following relation between the volume fraction of
polymer, x, and the vapor pressure of the solvent, P,

 2

0

4.0)1ln()ln(xxx
P
P ++−=

where P0 is the vapor pressure of the pure solvent. (Note: volume fraction is defined as (volume
of polymer)/(volume of polymer+volume of solvent), dimensionless).
 What is the volume fraction of polymer in the tank.

Background: This is a simple root finding problem for a value of x given (P/P0). No unit
conversions are necessary.

Solution strategy:
 Specify pressure ratio parameter (P/P0).

 Rearrange equation to 04.0)1ln()ln()(2

0

=−−−−= xxx
P
Pxf

 Create a graph of)(xf .
 Use fzero to find x.

2. Problem Statement: Fluid flow in a pipe of length, l (m), and diameter, d (m), is characterized by

two regimes: laminar flow, Re < 2000, and turbulent flow, Re > 2000, where Re is the Reynolds
number defined as

µ

ρvd=Re

MATLAB Workshop 7 page 42

Re is dimensionless, v is the fluid velocity (m/s), ρ is the fluid density (kg/m3), and µ is the fluid
viscosity (Pa·s). In turbulent flow, the equation

 802.0)(Relog21
10 −= f

f

defines the relation between the friction factor, f, and Re. The friction factor is defined as

lv

Pdf
2

2
1 ρ

∆=

where ∆P (Pa) is the pressure drop from the beginning to the end of the pipe.
 Use the friction factor to find the pressure drop per unit length, ∆P/l, for water flowing
through a 5 cm diameter pipe at 5 m/s. (ρwater = 1000 kg/m3; µwater = 0.001 Pa•s).

Background: This is a root finding problem for a value of f given Re. Since units are metric, no
unit conversions other than diameter (0.05 m) are necessary.

Solution strategy:
 Specify parameters and givens
 Calculate Re

 Rearrange friction factor equation to 0802.0)(Relog21)(10 =−−= f
f

ff

 Create a graph of)(ff .
 Use fzero to find f .

3. The van der Waals equation of state (more accurate than the ideal gas law) is given by

 RTbV
V
aP =−+))((2

where P is the absolute pressure (Pa), V is the specific or molar volume (m3/mol), R is the gas
constant (= 8.3144 J/(mol•K)), T is the absolute temperature (K), and a (m6

•Pa/mol2) and b
(m3/mol) are parameters different for and specific to each gas. Note that V is not simply the
volume; rather it is the volume that would be occupied by one mole of gas at a specified
temperature and pressure.
 Find the specific volume for carbon dioxide (a = 3.592 L2

•atm/mol2 and b = 42.67
cm3/mol) at 300 K and 73 atm.

Background: This problem requires units conversion. Also, the equation cannot be rearranged to
a form V = something (try it!), so a root-finding technique must be used to find V .

Solution strategy: Convert all units to SI before performing calculation
 L_to_m3 = 1.0•10-3
 atm_to_Pa = 1.013•105
 cm3_to_m3 = 1.0•10-6
 Rearrange equation to form f(x) = 0 for finding root.

 0))(()(2 =−−+= RTbV
V
aPVf

 Create a graph of)(Vf .

MATLAB Workshop 7 page 43

 Use fzero to find V .

4. Finding the trajectory that maximizes the range of a rocket is a topic near and dear to many

aerospace engineers. The equations that describe a rocket trajectory are rather complex and
depend upon the type of engine used (constant thrust or constant acceleration). Instead of solving
the complex equations, consider a simpler problem in which an object of mass m is given an
initial momentum p at an angle θ relative to the horizontal. Neglecting air resistance and
curvature of the earth, from elementary physics

)cos()/(θmpVx = horizontal velocity
)(maxmax tVx x= horizontal distance or trajectory
)sin()/)(/2(max θmpgt = time of flight

where g is gravitational acceleration.

What is the maximum trajectory for a 10 kg object given an initial momentum of 2000 kg m s-1 ?
Create a graph that illustrates the trajectory.
(Hint: find the θ that maximizes the trajectory. Ans: xmax = 4082 m)

5. The city of Lower Podunk needs a new water tank reservoir for its water supply system. The city

manager asks you to estimate the minimum cost of material required to construct a cylindrical
tank that will hold 5000 m3 of water. The reservoir requires a steel floor and side wall, but does
not need a top. After consulting with a materials specialist, you determine that 2.0 cm-thick steel
plate will withstand the water pressure inside the tank without collapsing. You also have the
following information: ρsteel = 0.284 lbmin-3, steel cost = 0.40 $ kg-1

 What are the tank dimensions (height, diameter) that will minimize the cost of material? What is

the minimum cost? Make a graph that illustrates the contributions of the bottom and side costs to
the overall costs as a function of diameter. Choose a display range that highlights the information
the graph is intended to convey.

Recap: You should have learned
• How to graph several lines on a single graph.
• How to fine the minimum and maximum elements in a vector.
• How to use inline to define a function
• How to use fzero to find the roots of equations
• How to solve an ordinary differential equation using MATLAB routines

MATLAB Workshop 8 page 44

MATLAB Workshop 8
 Objectives: Learn how to declare matrices, do simple matrix arithmetic, use matrix functions,
use the colon operator, :, and save workspaces in MATLAB.

 Recall: A row vector is an array with one row and n columns (i.e., a 1 by n array or matrix). A
column vector is an array with n rows and one column (i.e., an n by 1 array or matrix). More generally,
a matrix is an n by m (rows by columns) array of elements.

array term by term operators array functions
 .* term by term multiplication size(X) determines size of X
 ./ term by term division inv(A) inverts array A
 .^ term by term exponentiation

• Start MATLAB and perform the following

>> cd your MATLAB directory
>> diary wkshop8a.txt
>> header
 Display of your header output

• Declaring matrices (arrays)

»
» P = [2 4 6; 6 4 2]
P =
 2 4 6
 6 4 2
» size(P)
ans =
 2 3

»
» Q = [1, 3, 5; 0, -1, -3; 1, 1, 1]
Q =
 1 3 5
 0 -1 -3
 1 1 1
» size(Q)
ans =
 3 3

»
» R = [1 3 5
1 1 1
5 3 1]
R =
 1 3 5

P is an array (matrix) with 2 rows and 3 columns. The elements Pi,j are entered row-by-row with rows
separated by a semicolon, ;. size returns the number of rows and columns.

Q is an array (matrix) with 3 rows and 3 columns. The elements Qi,j are entered row-by-row with rows
separated by a semicolon, ;. Elements in a row can be separated by commas, ,.

MATLAB Workshop 8 page 45

 1 1 1
 5 3 1
» size(R)
ans =
 3 3

»
» S = [1, 3, 5; 0; 1, 1, 1]
??? , 3, 5; 0; 1, 1, 1]
All rows in the bracketed expression must have the same
number of columns.

»
» d = [1 0 0];
» e = [0 1 0];
» f = [0 0 1];
» length(d)
ans =
 3
»
» I = [d; e; f]
I =
 1 0 0
 0 1 0
 0 0 1
» size(I)
ans =
 3 3

»
» f = [d e f]
f =
 1 0 0 0 1 0 0 0 1
» size(f)
ans =
 1 9

»
» Q(1,1)
ans =
 1
» Q(2,3)
ans =
 -3

A matrix can also be formed as rows of equal length vectors (separated by a semi-colon, ;, or the return
key.).

A matrix must have the same number of columns in every row.

Not using semi-colons or the return key to separate rows creates a row vector!

Individual elements of a matrix are referenced by their (row, column) numbers (or subscripts). Note that
the subscripts are inside normal parentheses. Using square brackets will redefine the matrix !

R is an array (matrix) with 3 rows and 3 columns. Rows can be separated by a semi-colon, ;, or, as
shown here, using the return key. Note: matrices will typically (not always) be denoted by an upper case
letter, vectors by lower case.

MATLAB Workshop 8 page 46

• Matrix mathematics
 MATLAB is uniquely equipped to handle matrix mathematics and operations (remember
“MATrix LABoratory?”).

» J = sin((pi/4)*I)
J =
 0.7071 0 0
 0 0.7071 0
 0 0 0.7071

»
» K = J + I
K =
 1.7071 0 0
 0 1.7071 0
 0 0 1.7071
»
» L = J + 2*I
L =
 2.7071 0 0
 0 2.7071 0
 0 0 2.7071
»
» M = P + I
??? Error using ==> +
Matrix dimensions must agree

»
» A = P*I
A =
 2 4 6
 6 4 2
»
» B = I*P
??? Error using ==> *
Matrix dimensions must agree

»
» C = Q*R
C =
 29 21 13
 -16 -10 -4
 7 7 7
»

“Scalar” operations on matrices are similar to scalar operations on vectors. The above statement was
equivalent to J i,j = sin((π/4)I i,j) for every element in I. The result is a matrix with the same size as I.

Two matrices of the same size can be added term by term. The result is R i,j = A i,j + Bi,j.

Two matrices can be multiplied if, and only if, the number of columns in the first (left hand) matrix are the
same as the number of rows in the second (right hand) matrix. In the preceding example, P has dimension
(2x3) and I has dimension (3x3). Thus, the first multiplication is allowed and the reverse multiplication is
not. The result of matrix multiplication, R = A*B, is R i,j = Σ(A i,k B k,j) where the sum is over the subscript k.

MATLAB Workshop 8 page 47

» D = R*Q
D =
 6 5 1
 2 3 3
 6 13 17

»
» Q
Q =
 1 3 5
 0 -1 -3
 1 1 1
»
» E = Q’
E =
 1 0 1
 3 -1 1
 5 -3 1

»
» F = inv(Q)
F =
 -1.0000 -1.0000 2.0000
 1.5000 2.0000 -1.5000
 -0.5000 -1.0000 0.5000

»
» G = F*Q
G =
 1 0 0
 0 1 0
 0 0 1
»
» H = F.*Q
H =
 -1.0000 -3.0000 10.0000
 0 -2.0000 4.5000
 -0.5000 -1.0000 0.5000

•

an

Matrix multiplication is not symmetric! A*B ≠≠≠≠ B*A.

The MATLAB single quote operator, ’, is used to transpose a matrix (exchange rows and columns).

The MATLAB inv function finds a matrix inverse.
MATLAB also provides the term by term operators (.*, ./, and .^) that perform the indicated operation
the indicated operation term by term. These operators should not be confused with the whole matrix
operators (without the . before the operator): note the difference between G and H.
 The Colon Operator, :
The colon operator is used to specify a range. For example, you have already seen
S = 1:5 with the result S = [1 2 3 4 5]

d
T = 1:2:10 with the result T = [1 3 5 7 9]

MATLAB Workshop 8 page 48

Used in this manner, the colon operator specifies a range of numbers delimited by the outside values
and a step size denoted by the middle number. If the middle number is missing, the step size is one.
 The colon operator can also be used to identify elements in a matrix as follows.

» I = H(:,1)
I =
 -1.0000
 0
 -0.5000

»
» J = H(1:2,2:3)
J =
 -3.0000 10.0000
 -2.0000 4.5000

• The save Command
 The amount of information and results of computations that come with matrix algebra problems
balloons considerably above that for other types of problems. The save command is a convenient
feature for saving your work for later access or for import into another application. The save
command has several variations. For a complete listing, type help save at the command line.

» who
your variables are:
 A listing of all variables you have created or used in this session
»
» save wkshop8a
» diary off
» quit

• Restart MATLAB and perform the following

» cd your MATLAB directory
» diary wkshop8b.txt
» header
 Display of your header output
»
» load wkshop8a
» who
your variables are:
 A listing of all variables you have created or used in this session
»
» H

The colon operator, :, is used to specify the range of all rows. The result is the column vector represented
by the first column of H is assigned to I. A row of H could be specified similarly.

The colon operator is used to assign the elements in rows 1 through 2, columns 2 through 3 of H to J.

List the variables in your workspace. Save the workspace. MATLAB creates a binary file with the
designated name with the file extension .mat and saves it in the current directory. Because the file is
saved in binary format, it cannot be read by other text editors (try it!).

MATLAB Workshop 8 page 49

H =
 -1.0000 -3.0000 10.0000
 0 -2.0000 4.5000
 -0.5000 -1.0000 0.5000

 If you are not interested in saving all the variables in your workspace, you could save only those
of interest by typing
 save filename variable_list
MATLAB will save only those variables listed.
 Finally, if you want to save the information in ASCII format, which can be read by other text
editors, you could use any of the commands
 save fname.ext X Y Z -ASCII uses 8-digit ASCII form instead of binary.
 save fname.ext X Y Z -ASCII -DOUBLE uses 16-digit ASCII form.
 save fname.ext X Y Z -ASCII -DOUBLE -TABS delimits (spaces) with tabs.
Note that you have the option of specifying a file type (extension) when saving in ASCII format.
Omitting the .ext will create an ASCII file without a file type. The file can still be read by a text editor.
Caution: The variable names will not be saved with these options - only the values associated with the
variables in the order specified.

Recap: You should have learned
• How to declare a matrix
• How to perform simple matrix arithmetic
• How to use matrix functions and matrix element-by-element operations
• How to use the colon operator to specify ranges within a matrix
• How to save workspaces and/or variables using the save command

Restart MATLAB. load workspace just saved. The variable list should be identical. The values
associated with the variables are accessed as before.

MATLAB Workshop 9 page 50

MATLAB Workshop 9
 Objectives: Develop a script to solve linear algebraic systems of equations. Use the script to
solve various problems involving linear systems of equations.

Solving a system of linear algebraic equations
 MATLAB is a convenient tool for a very common engineering problem: solution of a system of
linear algebraic equations, e.g.,
 1313212111 bxaxaxa =++
 1323222121 bxaxaxa =++
 1333232131 bxaxaxa =++
or
 Ax = b
where
















=

333231

232221

131211

aaa
aaa
aaa

A















=

3

2

1

x
x
x

x















=

3

2

1

b
b
b

b

A is the coefficient matrix, x is the unknowns vector, and b is the right hand side or forcing vector.
The solution can be obtained by applying a numerical technique known as Gaussian elimination to the
matrix equation
 Ax = b
or by finding the inverse of A and computing
 bAx 1−=

Creating a data file with matrix coefficients
 The first step in the solution is to create a data file that contains the augmented or extended
coefficient matrix
















=

3333231

2232221

1131211

baaa
baaa
baaa

E

which is the coefficient matrix with the column vector of right hand side elements appended. This
matrix contains all of the known information about your problem. This can be created by using a text
editor of your choice or by using the edit command in MATLAB to invoke the MATLAB text editor.
The individual elements of the matrix should be entered row-by-row, i.e.,

3333231

2232221

1131211

baaa
baaa
baaa

with spaces or tabs separating individual elements and the return key used to begin a new row. The
structure of the matrix and individual elements should be easily discerned when looking at the file.
Save your file as a text file with a meaningful name and with a .dat extension. The extension tells you
that the file contains data.

Example 1: Quarry problem
 A civil engineer needs a gravel mix consisting of 25% fine gravel, 50% gravel, and 25% coarse
gravel. Three quarries supply gravel mix. Quarry A produces 20% fine gravel, 50 % gravel, and 30%

MATLAB Workshop 9 page 51

coarse gravel. Quarry B produces 30% fine gravel, 55% gravel, and 15% coarse gravel. Quarry C
produces 40% fine gravel, 40% gravel, and 20% coarse gravel. What fraction of gravel for the required
mix should come from each quarry?

 The equations that describe this problem are

 fine gravel: 25.040.030.020.0 =++ CBA
 gravel 50.040.055.050.0 =++ CBA
 coarse gravel 25.020.015.030.0 =++ CBA

where A, B, and C represent the fractions of gravel from quarries A, B, and C, respectively. Each row
of coefficients represents the individual fractions of gravel in each quarry for the stated kind of gravel.
The right hand side represents the fraction of overall product represented by each kind of gravel.

 The extended coefficient matrix for this problem is thus
















=

25.020.015.030.0
50.040.055.050.0
25.040.030.020.0

E

Create a text file with the rows and columns of the E-matrix. Save it in your MATLAB directory as
quarry.dat.

Creating a script file to solve linear systems of algebraic equations
 If the problem on which you are working is a unique, one-time problem, MATLAB provides an
excellent interactive interface for solution. MATLAB also provides the ability to interactively develop
script files for use in solving commonly recurrent problems such as solution of a set of linear algebraic
equations. Working through the problem once will produce a diary file that can be easily edited to
produce a script file for use the next time you need to solve the problem.

 When working through a problem and creating a script file, some simple planning and
forethought will ease the process. With respect to linear algebraic systems of equations, the general
process involves (a) defining the equations to be solved based upon the problem at hand (a thought and
paper and pencil task - and actually the most difficult stage of the process because you will have a
script file to use for the solution), (b) creating a text file containing the extended coefficient matrix, (c)
solving the system of equations with your script file. The script file will need to do the following: (a)
ask you for the extended coefficient matrix file name, (b) extract the coefficient matrix; (c) extract the
right hand side matrix; (d) solve the set of equations; and (e) display the answer vector.

• Start MATLAB and perform the following

» cd your MATLAB directory
» diary wkshop9.txt
» header
 Display of your header output
»
» disp(‘Linear algebraic equation solver’)
Linear algebraic equation solver
»
» % get augmented coefficient file name

MATLAB Workshop 9 page 52

» filename = input(‘What filename? ==> ’,‘s’)
What filename? ==>
filename =
 quarry.dat

»
» % load extended coefficient matrix
» E = load(filename)
E =
 0.2000 0.3000 0.4000 0.2500
 0.5000 0.5500 0.4000 0.5000
 0.3000 0.1500 0.2000 0.2500

»
» % determine size of matrix
» [rows,cols] = size(E)
rows =
 3
cols =
 4

»
» % extract coefficient matrix, rhs vector
» A = E(:,1:rows)
A =
 0.2000 0.3000 0.4000
 0.5000 0.5500 0.4000
 0.3000 0.1500 0.2000
»
» b = E(:,cols)
b =
 0.2500
 0.5000
 0.2500

»
» % solve using Gaussian elimination
» % x is the solution vector
» x = A\b
x =
 0.6250
 0.2500
 0.1250

»
» % to see coefficient matrix, type A at command line
» % to see rhs vector, type b at command line

Display information when script file is invoked. Needs file name for extended coefficient matrix.

Use the colon operator, :, to extract appropriate parts of E into A and b.

Solve using Gaussian elimination. (See discussion below).

The load command is used to bring in a text file, row by row. Entries in a row are treated as a column.

The size function is used to determine the size of a matrix. It returns the number of rows and cols.

MATLAB Workshop 9 page 53

» diary off

 You now have a basic script file that will solve linear systems of equations. Notice that
comments were entered as the work progressed to identify what was happening (just as you should be
doing in solving a “regular” problem). These comments are also required in the script file to provide a
narrative of what the script file is doing. You will appreciate this if you need to review or revise the
script file at a later date.
 Using the text editor of your choice, open the file wkshop9.txt and edit it to produce a script file
for generic use in solving systems of linear algebraic equations. Your script file should look something
like this:

% lin_eq_solver - linear algebraic equation solver
% finds solution to system of equations Ax=b where
% A is the coefficient matrix
% b is the right hand side vector
% x is the unknowns vector
% requires user to input a text file with extended
% coefficient matrix, E

% get extended coefficient matrix file name
 disp(‘ ’)
 disp(‘Linear algebraic equation solver’)
 filename = input(‘ What filename? ==> ’,‘s’);

% load extended coefficient matrix, determine size
 E = load(filename);
 [rows,cols] = size(E);

% extract coefficient matrix, rhs vector
 A = E(:,1:rows);
 b = E(:,cols);

% solve using Gaussian elimination
% x is the solution vector
 disp(‘ ’)
 x = A\b
 disp(‘ ’)

% inform user about viewing A and b
 disp(‘to see coefficient matrix, type A’)
 disp(‘to see rhs vector, type b’)
 disp(‘ ’)

 Save your script file in your MATLAB directory as lin_eq_solver.m. Note that in editing the
diary file comments were added at the top of the file to explain what the script does. It identifies not
only the purpose, but what the variables are and what is required by the script to properly operate.
These lines are displayed when help lin_eq_solver is typed at the command line. Once created,
you should check your work. Also note that the display suppression command, ;, was used to suppress

Final comments to user to display coefficient matrix and rhs vector, if desired.

MATLAB Workshop 9 page 54

display of commands in the script file (once it is running properly, we are only interested in the results
of running the script file - not the process).

• Back in the MATLAB command window

» help lin_eq_solver
 lin_eq_solver - linear algebraic equation solver
 finds solution to system of equations Ax=b where
 A is the coefficient matrix
 b is the right hand side vector
 x is the unknowns vector
 requires user to input a text file with extended
 coefficient matrix, E
»
» lin_eq_solver

Linear algebraic equation solver
 What filename? ==> quarry.dat

x =
 0.6250
 0.2500
 0.1250

to see coefficient matrix, type A
to see rhs vector, type b

» A
A =
 0.2000 0.3000 0.4000
 0.5000 0.5500 0.4000
 0.3000 0.1500 0.2000
»
» b
b =
 0.2500
 0.5000
 0.2500

Saving your results
 You worked hard to get the solution to your set of equations. You probably now need to export
the results to a file for use in the word processor that you are using to create the report of your efforts.
This is most easily done with the save command.

• Back in the MATLAB command window

» save quarry_results.txt x -ascii

Check the script by running the problem that was used to develop it. If you don’t like the display, edit the
script file until you have a display that you like.
save filename.ext variable_list -ascii will create a file in the active directory with the
indicated filename. It will place the indicated variables into the file. The -ascii command tells MATLAB
to save the variables as ASCII text rather than binary code. For more information, type help save.

MATLAB Workshop 9 page 55

Gaussian elimination versus matrix inversion
 The preceding script file made use of the slash operator, \, to instruct MATLAB to use a
numerical algorithm called Gaussian elimination to solve the system of equations. Type help slash
if you want more information on the command. The problem could also be solved by using the set of
commands

» Ainv = inv(A)
» x = Ainv*b

which is the more traditional method, i.e., finding the inverse of the coefficient matrix, Ainv, and
multiplying the rhs vector, b, by Ainv. Try it!

 However, the “traditional method” requires more computational time and, because computers are
subject to round-off and truncation errors in representing numbers, more prone to instability and errors
than the Gaussian elimination method. Thus, Gaussian elimination (or one of its variants) is the
preferred computational method to solve systems of equations.

Exercises: Use your script file, lin_eq_solver to solve the following problems.

1. Six people, Alice, Barb, Carol, Dean, Eric, and Fred, each have a bag of money. Find the amount

in each bag if:
· The total of all six bags is $33.56;
· Carol has twice as much money as Alice;
· Barb and Carol together have as much as Dean;
· Alice and Barb together have as much as Eric;
· Eric’s amount subtracted from Fred’s amount is twice Alice’s amount; and
· $1.15 is left after subtracting Barb’s amount and Eric’s amount from Fred’s amount.

2. Find the five-digit number that satisfies the following properties:

· The sum of all the digits is 18;
· The third digit is the sum of the first and second digits;
· Subtracting the third digit from the fourth digit yields 4;
· The first and third digits added together give the fifth digit; and
· The first digit is twice the second digit.

3. Find the six-digit number that satisfies the following properties:

· The first and third digit sum to 10;
· The sum of the second, third, and fifth digits equals the fourth digit;
· The third and last digits are the same;
· The sum of the second and third digit equals the fifth digit;
· The fourth digit is the same as the last digit minus the first digit; and
· The sum of all the digits is 22.

4. Five people, Alice, Ben, Cindy, Dean, and Evan, decide to invest in the stock market. What is

each person’s profit after one year if:
· The sum of all their profits is $299.25;

MATLAB Workshop 9 page 56

· Evan’s profit is three times as large as Dean’s profit;
· Ben’s and Cindy’s profits together total to Dean’s profit;
· Alice and Cindy together made $89.20 profit; and
· Alice’s profit was $101.55 more than Dean’s profit.

Recap: You should have learned
• How to create a script file to solve linear systems of equations.
• How to use the load command.
• How to use the size command.
• How to extract the coefficient matrix and rhs vector from the extended coefficient matrix.
• How to solve the system of equations using Gaussian elimination.
• How to solve the system of equations using matrix inversion.
• How to use the save command.

MATLAB: Basic Graphics page 57

MATLAB Basic Graphics

 MATLAB has numerous graphics techniques that allow simple, easy visualization of functions
and data. Basic 2D plotting capabilities are addressed in this chapter. If you are interested in more
information than is provided here, you can obtain it directly from the MATLAB help facility by typing
 help graphics General description of graphics functions
 help graph2d More specialized description of 2D graphics functions
 help graph3d More specialized description of 3D graphics functions
 help specgraph Description of special graphic styles and displays
 help winfun Description of WindowsTM interface functions

 MATLAB contains a complete graphics toolbox called Handle Graphics that allows one to have
complete control over the look and feel of any graphics display. This includes font type and font size
for text, location of text on the screen, embedding graphs within other graphs, etc, that the advanced
graphics designer might want to control. If you are not satisfied with the basic graphics functions and
capabilities described here, you might want to learn more about Handle Graphics.

Saving and/or printing plots
 The MATLAB Graphics Window has the typical menu and shortcut icons associated with
WindowsTM applications. To save a graphics figure, use the File-Save or File-Save As menu
commands. If you have previously saved the figure, it will simply be saved under whatever name you
are using for the figure. If you have not yet saved the figure, or you want to change the name under
which you are saving the figure, a typical Save As window will appear. Save your file with file type
Fig-files (.fig extension). The MATLAB graphics window will then be able to open the figure for
further work at your convenience.

 To export your figure for use in another application, such as a word processor, use the File-Export
menu. Figures can be saved in the file format of your choice, e.g., .emg, .bmp, .eps, .jpg, or .tif. The
figures in this chapter were saved in .jpg format and imported into a Microsoft WordTM document.
 Your figure can be sent to the printer either by using the printer icon on the tool bar or by using
the File-Print menu command. Note that you can specify the printing format using the File-Page Setup
and File-Print Setup menu commands.

Multiple open graphics windows
 You can have more than one open graphics window by using the command

 » figure(N)

in the command window. MATLAB will either open a new graphics window, number N, and make it
the current graphics window when this command is invoked or, if the command was used previously,
make graphics window N the current graphics window. The number of graphics windows you can
have open at one time is limited only by the capacity of your computer.

2D plot graphics
 The basic 2D plot functions are

 plot(x,y,s) Plot with linear (x,y) axes; line type specified by string s
 semilogy(x,y,s) Plot with linear x, logarithmic y axes; line type specified by string s

MATLAB: Basic Graphics page 58

 semilogx(x,y,s) Plot with logarithmic x, linear y axes; line type specified by string s
 loglog(x,y,s) Plot with logarithmic (x,y) axes; line type specified by string s
 plot(y,s) Plot y versus its row index; line type specified by string s

The first four of these require two vectors of equal length, x and y, and the line-style string, s, that
defines how the vectors are displayed on the plot (color, symbols, line type). plot(y,s), in contrast,
will plot the elements of y versus their row index. If s is omitted, MATLAB will use default options
for the plot.

• Line-style options. The string, s, is optional when the plotting command is invoked. If not
provided, MATLAB will use the next default option. A line-style is defined by choosing an entry from
each column of the line-style options table. Because all of the codes for the various style options are
different, the options in the string can be defined in any order, e.g., ‘m^-.’ is the same as ‘^m-.’
which is the same as ‘-.m^’, etc.

Line-style Options
Line Color Line Symbol Line Type

y yellow . point - solid
m magenta o circle : dotted
c cyan x x-mark -. dash dot
r red + plus -- dashed
g green blue * star
b blue s square
w white d diamond
k black v triangle (down)
 ^ triangle (up)
 < triangle (left)
 > triangle (right)
 p pentagram
 h hexagram

 Examples
 plot(x,y) plots x vs y with default line specifications
 plot(x,y,’m<’) plots x vs y with magenta left-triangles (no line)
 plot(x,y,’d-.b’) plots x vs y with blue diamonds and blue dash-dot line

 Once a plot is displayed, you can change the line-style at will in the graphics window. One
method is to select a line by clicking on it with the left mouse button and use the Tools-Line Properties
menu, which will bring up a window that allows you to specify properties for the currently selected
line. Another method is to click on the line with the right mouse button to bring up a pop-up menu that
offers choices of what to change.

• Text objects. Once a basic plot has been created using one of the various plot commands, you
can alter text the text objects that are used to annotate the graph at will.

• Axes labels, plot title. The three most basic text objects are the x-axis label, the y-axis
label, and the title, which are implemented after the basic plot has been made with the commands

» xlabel(xaxis_string_name)

MATLAB: Basic Graphics page 59

» ylabel(yaxis_string_name)
» title(title_string_name)

respectively. string_name can be supplied as text enclosed within single quotes, e.g.,

» xlabel(‘time, s’)
» ylabel(‘displacement, m’)
» title(‘spring position vs time’)

Alternatively, it could be supplied through a string variable, e.g.,

» xlabelname = ‘time, s’;
» ylabelname = ‘displacement, m’;
» titlename = ‘spring position vs time’;
» xlabel(xlabelname)
» ylabel(ylabelname)
» title(titlename)

 If you do not want to use any of these, you can add them by using the Tools-Axes Properties
menu in the graphics window. This will bring up a window where you could specify them.

• Legend. If more than one function or set of data are displayed in a plot (see Plot Overlay,
following), you might need a legend to help the viewer distinguish which curve is which. The legend
command produces a boxed legend on the graph.
 The basic format for the legend command is

 legend(string_name1, string_name2, …, tol)

where string_nameX is the name by which you want to refer to the Xth data set that you have plotted
in the figure. MATLAB will stack the legend entries vertically with the current line style associated
with legend entries displayed to the left of the entry.

 tol is the legend placement: -1 for outside the plot and 0 for inside the plot. If tol is omitted,
MATLAB will seek to place the legend inside the plot where minimal information will be obscured by
the legend. If MATLAB cannot do so, the legend will be placed outside the plot. If you do not like
where the legend has been placed, you can grab the legend with the mouse and drag it to a location
more to your liking. legend off will delete the legend from the plot.

• Text. Occasionally some additional text in the plot, highlighting a feature of the plot such
a local maximum or minimum, will add more power to the graphic. MATLAB uses the command

 text(x-coord,y-coord,‘text string’)

to place text starting at the indicated (x,y) coordinates on the plot. Perhaps more convenient and useful
is the command

 gtext(‘text string’)

which lets the user specify where to place the text by clicking the mouse at the desired location.

MATLAB: Basic Graphics page 60

 Alternatively, and easier, you could use the text icon in the graphics window tool bar to place text
wherever you desire in the graphics window.

• Font type, size, and color. With the exception of the legend window, you can control the
font type, size, and color of any text (axis labels, title, etc) by clicking on the text with the right mouse
button to activate a pop-up menu with font choices.

• Axis control. MATLAB has internal algorithms that control the default appearance of the axes
when the plot first appears. Axis control commands must come after the plot is generated in order to
have the desired effect. Some predefined, useful axis string commands are

 axis(‘equal’) Sets displays scale lengths equal on both axes
 axis(‘square’) Sets the default rectangular axes frame to a square
 axis(‘normal’) Restores default axes
 axis(‘off’) Removes axes frame (and tick marks) from the plot
 axis(‘axis’) Freezes current axes limits

 More generally, the display ranges can be controlled by using the command

 axis([xmin xmax ymin ymax])

which sets the ranges for the display. Note that [xmin xmax ymin ymax] is a vector and, thus,
can be satisfied by any means that provides a vector. Thus

 axis([0 10 10 100]) (sets ranges 0 ≤ x ≤ 10 and 10 ≤ y ≤ 100)

 axislimits = [0 10 10 100]);
 axis(axislimits)

 x_axis = [0 10]; y_axis = [10 100];
 axis([x_axis y_axis])

are all equivalent.

 Partial specification of limits with MATLAB providing the other limit(s) is also possible by using
inf where you would like MATLAB to provide the limit.

 axis([0 inf -inf inf]) sets xmin to 0, lets MATLAB determine other limits
 axis([-inf 10 1 10]) sets xmax, ymin, ymax, lets MATLAB determine xmin

 The axis limits on a plot can be manually changed once the display is in the graphics window by
using the Tools-Axes Properties menu command. This will bring up a window that allows you to
specify not only the axis range but also whether to use linear or logarithmic scaling on the axes and/or
whether to use normal (least to greatest) or reverse (greatest to least) number order on the axes. This
window can also be brought up by clicking on an axis with the right mouse button and selecting
Properties from the pop-up menu that appears.

MATLAB: Basic Graphics page 61

• Plot overlay: Multiple display on one plot. MATLAB has several methods for displaying more
then one curve on a single graph.

• Method 1: hold command. The hold command is used to maintain the current plot in the
Graphics Window. hold on freezes the current plot in the Graphics Window. All subsequent plots
are superimposed on the existing plot. The following script shows one use of the hold command to
produce multiple curves on the same graph. It is available in the file TwoDplot1.m.

% TwoDplot1 : hold command example for multiple lines in same plot
% script to produce multiple curves on a single plot

% generate & plot 1st curve
 t = linspace(0, 4*pi, 200);
 curve1 = sin(t);
 plot(t,curve1,‘r’)
 hold on

% generate and plot 2nd curve
 curve2 = sin(2*t);
 plot(t,curve2,‘g’)

% generate and plot 3rd curve
 curve3 = sin(t/2);
 plot(t,curve3,‘b’)

% annotate
 xlabel(‘time, s’)
 ylabel(‘sine function’)
 title(‘sine function behavior’)
 legend(‘sin(t)’, ‘sin(2*t)’, ‘sin(2/t)’)
 hold off

 Since the hold command freezes the plot window, not all data need be generated before the first
plot is made.

• Method 2: line command. The line command is and alternative method to plot more
than one curve in a Graphics Window. The general form of the line command is

 line(xdata,ydata,parameter_name,parameter_value)

where the parameter_name / parameter_value could be any graphics parameter. Most
typically, we will use ‘linestyle’ / ‘linestyle option’ as in the following example
(available in the file TwoDplot2.m).

% TwoDplot2 : line command example for multiple lines in same plot
% script to produce multiple curves on a single plot

% generate & plot 1st curve
 t = linspace(0, 4*pi, 200);
 curve1 = sin(t);
 plot(t,curve1,‘-’)

MATLAB: Basic Graphics page 62

% generate and plot 2nd curve
 t = linspace(0, 4*pi, 100);
 curve2 = sin(2*t);
 line(t,curve2,‘linestyle’,‘--’)

% generate and plot 3rd curve
 t = linspace(0, 4*pi, 150);
 curve3 = sin(t/2);
 line(t,curve3,‘linestyle’,‘-.’)

% annotate
 xlabel(‘time, s’)
 ylabel(‘sine function’)
 title(‘sine function behavior’)
 legend(‘sin(t)’, ‘sin(2*t)’, ‘sin(2/t)’)

 As with the hold command, not all data need be generated before the first plot is made when
using the line command. Note that the t vectors, while encompassing the same range, can be of
different length. The same is true when the hold command is used.

• Method 3: extended plot command. The extended plot command

 plot(x1,y1,linestyle1,x2,y2,linestyle2,…)

can also be used as shown in the following script (available in the file TwoDplot3.m).

% TwoDplot3 : extended plot command example for multiple lines
% script to produce multiple curves on a single plot

% generate curves
 t = linspace(0, 4*pi, 200);
 curve1 = sin(t);
 curve2 = sin(2*t);
 curve3 = sin(t/2);
 plot(t,curve1,‘-’,t,curve2,‘--’,t,curve3,‘-.’)

% annotate
 xlabel(‘time, s’)
 ylabel(‘sine function’)
 title(‘sine function behavior’)
 legend(‘sin(t)’, ‘sin(2*t)’, ‘sin(2/t)’)

 The most obvious difference with the first two methods is that all data must be available before
plotting. A more subtle difference is that all of the plot vectors t and curve must be the same length as
well as the same range on t. The first two methods only require that the range of the x-variable vector
be the same.

• Method 4: plot command using matrices. The plot command can also be used with the
y-data held in a matrix as demonstrated in the following script (available in the file TwoDplot4.m).

% TwoDplot4 : plot command using matrices example for multiple lines

MATLAB: Basic Graphics page 63

% script to produce multiple curves on a single plot

% generate curves
 t = linspace(0, 4*pi, 200);
 curves = [sin(t); sin(2*t); sin(t/2)];

 plot(t,curves)

% annotate
 xlabel(‘time, s’)
 ylabel(‘sine function’)
 title(‘sine function behavior’)
 legend(‘sin(t)’, ‘sin(2*t)’, ‘sin(2/t)’)

 The three rows of the matrix curves each have the same number of elements as the independent
variable vector, t (a requirement). Each row of curves is plotted against the corresponding value in t,
just as in Method 3. However, MATLAB chooses default linestyles for the plot. Although you can change the
default linestyles to whatever you wish in the graphics window, you need to know which is which!

• Special 2D plots. MATLAB has a variety of special 2D plots that can be used. Some of them are
shown in the following Table 1 along with the scripts that generated them. The scripts are available as
the corresponding .m file. More information on any of the plotting functions can be obtained by using
the help command followed by the function name. More special functions can be found by typing
help graph2d.

Table 1. Examples of selected MATLAB special 2D plot functions.

% bar_demo - example of 2D bar plot
% r*r = 2cos(3t+pi/4), 0 <= t <= pi
% x = rcos(t)

 t = linspace(0, pi, 50);
 r = sqrt(abs(2*cos(3*t+pi/4)));
 x = r.*abs(cos(t));

 bar(t,x)
 axis([0 pi 0 inf])

MATLAB: Basic Graphics page 64

% errorbar_demo - example of 2D
 errorbar plot
% fcn = sin(x), 0 <= x <= 6
% error = fcn + random number

 x = 0:0.1:6;
 fcn = sin(x);
 random = rand(1,61);

 errorbar(x,fcn,random)

% fill_demo - example of 2D fill plot
% r*r = 2sin(3t), -pi <= t <= pi
% x = rcos(t), y = rsin(t)

 t = -pi:pi/100:pi;
 r = sqrt(abs(2*sin(3*t)));
 x = r.*cos(t);
 y = r.*sin(t);

 fill(x,y,'m')
 axis('square')

% fplot_demo - example of 2D fplot
% function to be plotted can be a
% string, defined by inline,
% or a .m function

 fcn = inline('cos(2*pi*x/3)*...
 exp(-0.1*x)','x');

 fplot(fcn,[0 10])

% polar_demo - example of 2D polar plot
% r*r = 2cos(3t), 0 <= t <= 2*pi

 t = linspace(0, 2*pi, 200);
 r = sqrt(abs(2*cos(3*t)));

 polar(t, r)

MATLAB: Basic Graphics page 65

% stairs_demo - example of 2D
 stairs plot
% r*r = 2cos(3t-pi/4), 0 <= t <= pi
% x = rcos(t)

 t = 0:pi/50:pi;
 r = sqrt(abs(2*cos(3*t-pi/4)));
 x = r.*abs(cos(t));

 stairs(t,x)
 axis([0 pi 0 inf])

% stem_demo - example of 2D stem plot
% f = sin(x), 0 <= x <= 2*pi

 x = linspace(0, 2*pi, 50);
 f = sin(x);

 stem(x,f)

% comet_demo - example of 2D comet plot
% f = x sin(x), 0 <= x <= 10pi

 x = linspace(0, 10*pi, 500);
 f = x.*sin(x);

 comet(x,f,'k-')

Run comet_demo to see plot in action.

Multiple Plots in One Graphics Window: subplot
 The command

 subplot(m,n,p)

will divide the current window into a grid with m rows and n columns. It will place the next plot in the
pth window, counting successively by columns across rows. An example script (available in the file
subplot_demo.m)

% subplot_demo : multiple plots in single window
% script to produce multiple plots in a graphics window

% plot 2 rows, 2 columns in single window
 subplot(2,2,1), polar_demo

MATLAB: Basic Graphics page 66

 subplot(2,2,2), fill_demo
 subplot(2,2,3), stairs_demo
 subplot(2,2,4), bar_demo

produces the graphic in Figure 1. (Note that two MATLAB
commands, separated by a comma, are placed on the same
line to enhance script readability.)

3D plot graphics
 MATLAB also provide 3D graphing capability. The basi

 plot3(x,y,z) Plot 3D graph with lin
 view(azimuth, elevation) View from position in

The view command identifies the angles (in degrees!) of viewin
vantage point, as illustrated in Fig 2. If omitted, the viewing
angles are (-37.5, 30).

 The following script (available in the file ThreeDplot1.m
creates the traditional projections of a function in the various
coordinate planes. The plot is shown in Fig 3.

% ThreeDplot1 : 3D plot example
% script to produce four views
% of the 3D function f(x,y,t)
% r = sin(3t), -pi <= t <= pi
% x = rcos(t), y = rsin(t)

% generate function points
 t = -pi:pi/100:pi;
 r = sin(3*t);
 x = r.*cos(t);
 y = r.*sin(t);

% place default view in first subwindow
 subplot(2,2,1)
 plot3(x,y,t), grid
 xlabel('rcos(t)'), ylabel('rsin(t)')
 zlabel('t'), title('default view')

% place x-y projection in second subwindow
 subplot(2,2,2)
 plot3(x,y,t), view(0,90)
 xlabel('rcos(t)'), ylabel('rsin(t)')
Fig 1. Example of multiple plots in a
single graphics window using subplot.
c commands are

ear scales
dicated

g

)

azimuth

elevation

y

x

z

view

azimuth

elevation

y

x

z

view

Fig 2. Definition of viewing angle
in 3D plots.

MATLAB: Basic Graphics page 67

 zlabel('t'), title('x-y projection')

% place x-z projection view in third subwindow
 subplot(2,2,3)
 plot3(x,y,t), view(0,0)
 xlabel('rcos(t)'), ylabel('rsin(t)')
 zlabel('t'), title('x-z projection')

% place y-z projection in fourth subwindow
 subplot(2,2,4)
 plot3(x,y,t), view(90,0)
 xlabel('rcos(t)'), ylabel('rsin(t)')
 zlabel('t'), title('y-z projection')

• 3D surface/mesh plots.
Frequently, we are interested in
examining a response surface rather
than the linear behavior of a function.
MATLAB provides two methods.
mesh will create a mesh
representation of the surface in which
surface response points are connected
by lines The lines are color-coded by
height above the viewing plane.
surf is essentially the same as mesh
with the exception that the mesh
space between lines is now also
color-coded with fill to create a
“smoother” surface. Both mesh and
surf require mesh grid for
calculating the surface response
points. This is created by using meshgrid in conjunction with the x vector of x-points and y-vector of
y-points. The following script (ThreeDplot2.m) illustrates the basics of mesh and surface plots.

% ThreeDplot2 : 3D surface plot example
% script to produce a 3D surface plot
% z = 1/(x*x+y*y+10)

% generate function points
 x = linspace(-5,5,25);
 y = x;
 [X,Y] = meshgrid(x,y);
 Z = 1./(X.*X+Y.*Y+10);

% create mesh plot
 subplot(1,2,1)
 mesh(X,Y,Z)
 xlabel('x'), ylabel('y')
 zlabel('z'), title('mesh view')

% create surface plot

Fig 3. Three-dimensional projections using plot3.

Fig 4. Difference between mesh and surf.

MATLAB: Basic Graphics page 68

 subplot(1,2,2)
 surf(X,Y,Z)
 xlabel('x'), ylabel('y')
 zlabel('z'), title('surface view')

• 3D rotation. One of the most powerful
features of MATLAB graphics is the ability to easily
rotate any graph in three dimensions to obtain
different views. Although of limited use, this
applies also to 2D plots: they can be easily rotated
into three dimensions. To rotate a plot, select Tools-
Rotate 3D from the Figure Menu Bar. Then click on
the figure with the right mouse button. The current
view (azimuth, elevation) appears to the lower left.
To rotate the figure, simply drag the figure in the
direction you want to rotate. Fig 5 shows a rotation
of the mesh representation of Fig 4 from the default
projection to the (-28,-6) projection.

• Special 3D plots. Just as with 2D plots,
MATLAB has a variety of special 3D plots. A complet
by typing help graph3D and help specgraph.

Fig 5. 3D rotation can highlight different aspects
of a surface or mesh projection.
e listing of available plot types can be obtained

MATLAB: Programming Features page 69

MATLAB: Programming Features

Scripts and functions in MATLAB
 In addition to the interactive “programming” available with the command window, MATLAB
supports two kinds of predefined program elements: the script file and the function file. Both of these
file types are most easily developed using the interactive mode in the command window to solve a
known problem. The diary file resulting from the interactive problem solution can be easily edited,
deleting unnecessary lines or errors and adding appropriate comments, to create the desired file.

 Because script and function files use the same basic commands and program structure, they are
similar in appearance. They are, however, very different in purpose. A script file is designed to
perform a task, such as initial display of a graph or solving a system of linear algebraic equations. A
function is designed to calculate a value, such as the sin or cos. A purist would maintain that a function
should calculate only one value. If it were to be calculating more than one value, it would then be a
task and should be more appropriately designed as a script file. However, many practical instances
exist where more than one highly related value could conceivably be calculated by a single function,
such as calculating the slope and intercept in linear regression.

 Script and function files in MATLAB behave differently. The most important difference is that
all variables declared in a script file are added to the workspace, regardless of whether the results
display is suppressed with the semicolon operator, ;. Thus, any variable used in a script is available
after the script executes. Execution of a function file, however, does not add any variables to the
workspace - the function’s variables are “active” only while the function is executing. Thus, variables
and/or values used in a function, other than those returned by the parameter list, are not available after
the function executes.

• Script Files
 The generic form of a script file is shown at the
right. The script file starts with one or more
comments that identify what task the script
accomplishes, including values or information the
script needs to perform its task and the values that
result if the script operates successfully. The script
then executes the task in sequential steps. The results
of commands will display as the script executes
unless the suppress display operator, ;, is used at the
end of each command line.

 The script is saved as script_name.m in your
MATLAB directory. It can then be executed by simply typing script_name at the command line.
Typing help script_name at the command prompt will display the all comment lines up to the first
non-comment line.

 Remember: variables created in the script file remain in your workspace. Caution: if you
already have a variable with the same name as one in a script file, the script file changes the variable to
have the values calculated in the script file! Remedy: use uncommon variable names within a script
file to avoid overwriting other variables in your workspace.

% script_name - script to do ??
% requires:
% results:

% perform first step of task
 step 1 commands

% perform second step of task
 step 2 commands

Generic script file structure.

MATLAB: Programming Features page 70

• Function Files
 The generic form of a script file is shown below. The first line in the function file has the
general form

 function [out1, out2, …] = function_name(parm1, parm2, …);

The keyword function is required and must be all lower case. The values calculated by the function
are contained in square braces. The function name follows on the other side of the equals sign. The
variables and/or parameters required by the function are then listed inside parentheses. If only one
value is calculated by the function, which is the usual case, the first line can be abbreviated to

 function out1 = function_name(parm1, parm2, …);

 The function file then has one or more comments that describe what the function does, including
values or information the function needs to perform its tasks and the value(s) that result if the function
operates successfully. The function executes the value calculations sequentially. Each of the out
variables must have a line in the function that assigns a value to the variable name, e.g.,

 out1 = 2.0*pi;

 The function is saved as function_name.m in your MATLAB directory. Typing help
function_name at the command prompt will display the all comment lines up to the first non-
comment line. Several methods are available for using a function file. Functions that return a single
value can be used in any of the following ways:

 alpha = function_name(parm list) (assign the value to another variable)
 [alpha] = function_name(parm list) (assign the value to another variable)
 alpha = 2.0*function_name(parm list) (use the value in an arithmetic expression)
 function_name(parm list) (display the value)

function [out1, out2, …] = function_name(parm1, parm2, …);
% function_name - calculates ??
% requires:
% results:

% first step in calculation
 first step commands

% second step in calculations
 second step commands

% final values
 out1 =
 out2 =

Generic function file structure.

MATLAB: Programming Features page 71

Notice that assignment of the function value to a variable can be with or without square braces around
the variable name. The following form is required to capture all of the values returned by a function
that calculates more than one value:

 [ans1, ans2, ...] = function_name(parm list)

The function will assign the values of out1, out2, etc, in sequence to ans1, ans2, etc, for further use.

 Remember: variables and values created in the function file are not placed in your workspace.
Because of this, you can have the same variable names in both your workspace and the function
without changing the values of either by using the function. Caution: if you do not assign the values
calculated by a function to variables in your workspace, you will lose the values. Remedy: be sure to
properly assign all out values from the function to variables in your workspace.

MATLAB programming language features
 MATLAB provides the same powerful programming capabilities for interactive computing, script
files, and function files as most high level programming languages. Those familiar with another
programming language will have little or no trouble in understanding and using the programming
language structures available in MATLAB. Those who are less familiar with another programming
language should also be able to master and use the following programming language structures.

• MATLAB Program Control Structures
 Straight-line structures. The most common programming structure is straight-line execution of
commands, such as

t = 1:2:20;
u = 1:10;
plot(t,s)

Each command is processed sequentially. (If you are not sure what will result from the commands,
type them in the MATLAB command window.)

 Branching or decision structures. Frequently, the decision of whether to execute some commands
depends on the outcome of a comparison. For example, the sequence of commands

if (time < 0.0)
 velocity = 0.0;
end

asks that the value for time be compared with the value 0.0. If time is less than 0.0, then velocity is
given the value 0.0. This is called a one-sided decision structure.

 More frequently, decision structures have two or more sides. For example, the sequence of
commands

if (time < 0.0)
 velocity = 0.0;
else
 velocity = 1.5*time;
end

MATLAB: Programming Features page 72

is a two-sided decision structure. If the comparison on time is true, then the statement(s) between the
if line and the else line are executed. If the comparison is false, the statement(s) between the else
line and the end line are executed.

 Sometimes, multiple comparisons are needed, e.g.,

if (time < 0.0)
 velocity = 0.0;
elseif (time >= 0.0) & (time <= 10.0)
 velocity = 1.5*time;
else
 velocity = 3.0*time;
end

 The generic branching structure syntax is

if (comparison1)
 comparison1 commands;
elseif (comparison2)
 comparison2 commands;
elseif (comparison3)
 comparison3 commands;
...
else
 default commands;
end

Each structure starts with an if, may have elseif and else statements, and terminates with end.
The relational and logical operators that can be used to construct a comparison are provided in the
following table.

Relational Operators Logical Operators
< less than & logical AND
<= less than or equal to | logical OR
> greater than ~ logical NOT
>= greater than or equal to xor logical EXCLUSIVE OR
== equal to (same as)
~= not equal to

 Looping or repetition structures. Loops are used to repeat a series of commands for a specified
number of times or until a loop termination condition is met. MATLAB supports two types of loops.
The for loop is used to repeat the specified commands a prescribed number of times. For example, the
command sequence

% script to compute the sum and product of the first 10 integers
% initialize sum to zero, prod to one
 sum = 0;
 prod = 1;
% loop to find sum and product
for (i = 1:10)

MATLAB: Programming Features page 73

 sum = sum + i;
 prod = prod*i;
end

will execute 10 times, producing the required values for sum and prod. The loop index, i, will start
with the value 1, the two lines of code for sum and prod will execute, the loop index, i, will be
incremented to the value 2, the two lines of code for sum and prod will executed, etc, until on the final
repetition, the loop index, i, will have the value 10.

 The general for statement is

 for index = start_value:increment_size:final_value

Any variable name can be used for the index. The index has a starting value, increment size, and final
value. The loop will execute until the value of the index is the same as the final value. The display
suppression operator, ;, is used to suppress display of the repetitive commands while the loop is
running. If omitted, the vectors are displayed in their entirety at each step. The end statement
terminates the repetitive commands.

 The while loop is used to execute a group of statements for an indefinite number of repetitions,
terminating when the loop condition becomes false. An example similar to the preceding for loop is

% script to compute the sum and product integers
% until the sum exceeds 100
% initialize int to one, sum to zero, prod to one
 int = 1;
 sum = 0;
 prod = 1;
% loop to find sum and product
while (sum <= 100)
 sum = sum + i;
 prod = prod*i;
 int = int + 1;
end

As with the for loop, the while loop requires appropriate initialization conditions for the loop to
operate. The repetitive commands inside the loop will execute while the loop entrance condition is
true.

• Other MATLAB Language Features
 MATLAB has some features that may be available in other high level programming languages,
but have special formats for use in MATLAB.

 Error messages. MATLAB has totally inadequate error message capability. Error messages tend
to be terse, ambiguous, and uninformative.

 Comments. The comment operator, %, is used to provide comments about the program.
MATLAB will ignore everything on a line after the comment operator. Executable commands will
resume with the next line. Use of comments at the start of your script and function files is a crucial

MATLAB: Programming Features page 74

good programming practice to provide useful help information on what the script/function does, what
variables/parameters it needs to do its job, and what will result if it does its job properly.

 Continuation. Three consecutive periods, ..., at the end of a line tells MATLAB that the next
line is a continuation or part of the current line/command. For example

A = [1 1 1 1 1 1 1 1 ; 2 2 2 2 2 2 2 2; 3 3 ...
 3 3 3 3 3 3; 4 4 4 4 4 4 4 4; 5 5 5 5 5 5 5 5];

can be used to split the definition of matrix elements at any time.

 error command. If MATLAB encounters the command error(‘message’) inside a
function or script, the text message will display and the function or script will terminate. Control is
passed back to the command line. For example, the code

% script error_test
divisor = 0;
if (divisor == 0)
 error(‘ERROR - About to divide by zero’)
else
 disp(‘Did not get this far’)
 division = 1/divisor;
end

inside a function or script could be used to provide a warning message about when a calculation will
fail. If divisor equals zero, MATLAB will display the following

??? Error using ==> error_test
ERROR - About to divide by zero

The display and calculation in the else clause are not performed and control is passed immediately to
the command line. This feature allows you to augment the MATLAB error message facility with
something you can understand.

 File handling. MATLAB supports the C-language input/output file handling functions. Primary
among these are

 fopen Opens a file for further action
 fclose Closes an open file
 fscanf Reads data from a file
 fprintf Writes data to a file

Please consult a C-language reference for further details (the MATLAB help command will provide
some information).

 menu command. The MATLAB menu command is a convenient method to display a menu that
asks for user input. For example, the script

% get user choice for line color

MATLAB: Programming Features page 75

 disp(‘Please enter choice for line color’)
 disp(‘ blue = 1 ’)
 disp(‘ green = 2’)
 disp(‘ red = 3’)
 linecolor = input(‘‘Choice (1,2,3) ==> ’);

can be replaced by the single command

 menu(‘Please enter choice for line color’,‘blue’,‘green’,‘red’)

A pop-up window appears that allows the user to make a choice. The options are internally numbered
as shown in the longer script.

