
 1

A Concise Introduction to

MATLAB

by

Ted Scheick

Copyright 10/19/00
all rights reserved

 2

General facts and Tips

 Command screen
 In the command screen, you enter commands and view the results of your calculations. This screen
scrolls, so you can look at your previous work. It is all saved till you quit. It can be printed. However, it is
best to select and copy from this screen and paste the results into a word processor. There you can add
comments and produce a nice looking document.
 All variable names are case sensitive.
 All variables are arrays. Internal precision is 16 digits.
 All indices in arrays start with 1. This cannot be changed.
 Several commands may be placed on one line, if commas or semicolons separate them.
; after a command suppresses printing of the result. Often you will be glad you did this.
pi = π
i,j = -1 . e.g. 2+3i, 5+pi*i
inf infinity
Nan not a number
y=x assigns x to y (stores x in y)
disp(x) displays the variable x. Useful for making tables.
ans returned if the result was not assigned to another name. Can be used in the next calculation.
clc clears the command screen
↑,↓ Matlab stores recent keyboard input. These keys scroll through them VERY handy.
←,→ These keys move through the command on the current command line. Handy for changing
 the current command line (or one that was recalled by the ↑, ↓ keys). Very handy.

 The default numerical format has 4 digits after the decimal point. Change in the Options menu, or by
format short 4 digits after the decimal place
format long all 16 digits
format short e scientific notation with 5 significant digits
format long e scientific notation with all 16 digits.

 Workspace
 As you work, all you variables are saved. You can examine them, clear them and save or load them.
who shows the variables currently saved
whos shows the variables currently saved, their size and memory used.
clear clears all variables
clear x A clears x, A
save name saves all variables to name.mat in the current directory
load name loads the variables stored in name.mat in the current directory

 Directories and Files
what lists all m-files in the current directory
dir (or ls) lists all files and subdirectories in the current directory
cd (or chdir) show the current directory
cd .. move up one directory
cd dir change the current directory to the subdirectory dir
cd path change the current directory to the on specified in path, e.g. path = c:\matlab\bin

 Help Useful, but sometimes frustrating.
 You can use the help menu to search for topics or to look at a table of contents. There are many
interesting things (and m-files) you can examine through the table of contents.
 From the keyboard,
help name (name = operator, command, topic) will display information on the entity.
e.g. help \ displays information on \ and other operators and special characters
 help relop information about the relational and logical operators

 3

Creating matrices, Fundamental operations

 Matlab carries 16 digits but shows 4 after the decimal place in the default mode. Matlab does not
display the braces around matrices. The expression pi stands for π, and i or j = -1 . A complex number is
entered as 2+3i, for example. Names are case sensitive.
 Entries of matrices can be expressions or functions of known variables.
 If the matrix is to created but not displayed, follow the entry with a ; before hitting return.

 Enter Result (no brackets or , shown on screen)
Row vectors
r = [1/2 2.7 3] a space between entries [0.5 2.7 3] is stored in r
r = [sin(1), 2^3-1, 2,pi] commas separate entries [0.8414 7 2 3.1416]
some special rows:
r = 2:6 (in general, r = m:n) [2 3 4 5 6]
r = a:h:b [a, a+h, a+2h, …. b], b=a+Nh (h<0 is o.k.)
 e.g. r = 0:0.1:1 [0, 0.1, 0.2, … 0.9, 1]
r = linspace(a,b,n) n equispaced points from a to b, inclusive
 e.g. r = linspace(1,2,5) [1, 1.25, 1.5, 1.75, 2]

Column vectors c = r' where r is a row. ' means "transpose": make a row into a column and vice
versa.
c = (4:6)'







4

5
6

 is stored in c

Another way: use ; to start a new row
c = [exp(1); sin(pi/2); 2/3]







2.718

1
0.6667

Matrices ; or ENTER starts a new row
a = [1 3 1/2; 4 -1 2+sqrt(-1)]





1 3 0.5

4 -1 2+i is stored in a

a = [1 2 3 4 5 (hit ENTER)
 11 12 13 14 15 (")
 9 8 7 6 5]
spaces were added to line up the entries







1 2 3 4 5

11 12 13 14 15
9 8 7 6 5

First define rows r1, r2, r3 of the same length.
A = [r1; r2; r3]







r1

r2
r3

 i.e. A is a matrix with rows r1, r2, r3

First define columns c1, c2, c3 of the same length.
a = [c1 c2 c3]

[c1 c2 c3] i.e. a is a matrix with columns c1, c2, c3.

B = [A x]

Appends the column x to the right of A to form B

C = [A B] (a space or , separates columns) Places the columns of B to the right of those of A
and stores the result as C

C = [A;B] (a ; separates rows) Places the rows of B below those of A to form C

Using a loop:
for k = 1:m,
 for j = 1:n,
 A(k,j) = 1/(k+j+1); (use ; to suppress printing)
 end
end

Creates A (mxn) with the given entries
in row k, column j. m and n must be specified in
the loop or predefined.

 4

Other tricks and examples.
 A = [] defines A to be the empty matrix (one way to clear an old matrix)
B = [A [1 2 3]'] adds the column [1,2,3]' to A on the right. (A must have 3 rows).
B = [A; [2,3,5]] adds the row [2,3,5] to A at the bottom.
c = A(:,3) stores the 3rd column of A in c
r = B(5,:) stores the 5th row of B in r
a(2,4) (return) displays the entry of a in the 2nd row and 3rd column.
A(4,5) = 2 redefines A45 to be 2.
 If A were 3x3, A is redefined to be 4x5, and the undefined entries are set = 0.
A(:,5) = c replaces column 5 of A by c
 If A had 3 columns, column 5 is set = c, and the 4th column of A is set = 0.
B(10,:) = [] deletes row 10 of B
d(:,4) = [] deletes column 4 of d
Suppose x is a row or column vector with entries x1, x2, … xn
 x(2:5) is the same kind of vector but with entries x2,x3,x4,x5
Suppose A is a matrix with entries aij
 A(2:5,:) is the submatrix formed from rows 2,3,4,5
 A(:,5,7,9) is the submatrix formed from columns 5,7,9.
 A(:,[i1,i2,…,is]) is the submatrix composed of columns i1,…,is of A.
 A(1:3,4:6) is the submatrix formed from the entries aij in rows 1,2,3 and columns 4,5,6.

Special Matrices
zero(m,n) the zero matrix of size mxn
ones(m,n) the m×n matrix full of ones
diag(v) the diagonal matrix with diagonal entries dii = vi (v is a given vector).
eye(n) the n×n identity matrix
rand(m,n) an m×n matrix full of random numbers in (0,1)

Operations and matrix functions: A, B can be vectors or matrices (in most of these)
A+B add A and B
α*A multiply A by the scalar α
A/α = (1/α)*A (α is a scalar)
A*B matrix product (if defined)
A' conjugate transpose of A; the transpose if A is real
A+c adds the scalar c to every entry of the matrix or vector A
inv(A) A-1, if A is nxn and it exists. You are warned if it is numerically close to non-existence.
A^n A*A*…*A n times. Matlab does NOT compute n products to get this (too slow).
A.*B entrywise product [aij*bij]
A.^p entrywise powers [aij

p]
f(A) entrywise computation: f is applied to every entry of A.
 f = abs, sign, sqrt, exp, sin, cos, tan, asin, acos, atan, log etc. (see help elfun.)
polyval(c,x) The values of a polynomial at each entry of the vector x. If c has length k+1,
 poylval(c,x) = c(1)*x.^k + … c(k)*x + c(k+1)
x=size(A) gives x=[x(1) x(2)], x(1) = #rows, x(2) = #columns of A
length(x) length of the vector x
det(A) determinant of A
rank(A) rank of A (NOT computed by row reduction)
rref(A) row-reduced echelon form of A
round(A) rounds entries of A to the nearest integer
norm(x) the norm of a vector x. (other norms are also available, use help norm).
x = A\b If nonsingular, x = A-1b = inv(A)*b, but computed by elimination. b can be a column or
 matrix. If A is not square, x is one of the "best approximate solutions". Can be quirky.

For HELP: type help name and hit return. E.g. help +, help rref, help round

 5

sum(A) If A is a vector, then sum(A) = sum of entries, otherwise sum(A) is a row whose
 entries are the sums of the columns of A.
min(A) If A is a vector, min(A) is the smallest entry. Otherwise min(A) is a row whose
 entries are the least entry in each column.
max(A) similar to min(A), but replace min by max
diag(A) the column containing the diagonal entries of A
triu(A) the upper triangular part of A (including the diagonal)
tril(A) the lower triangular part of A (see help triu, tril for other uses).
[L U P] = lu(A) PA = LU, P = permutation matrix, L lower triangular, U upper triangular.
eig(A) the eigenvalues of A, as a column.
[P L] = eig(A) P is a matrix whose columns are unit eigenvectors, L is a diagonal matrix of
 eigenvalues, with AP = PL. You get this even if A is defective.
c=poly(A) c = [c1 c2 … cn+1] consisting of the coefficients of the (-1)n times the characteristic

polynomial of A: in backwards order: p(λ) = c1λn + … +cnλ + cn+1 = |λI − A|.
roots(c) returns the zeros of the polynomial p(λ) = c1λn + … + cn+1, where c=[c1 c2 … cn+1].
poly(r) returns the coefficients of the polynomial whose zeros form the vector r.
p=polyval(c,x) x is a matrix or vector. c=[c1 c2 … cn+1]. p = c1xn + … +cnx + cn+1, computed entrywise.
eig(A,B) the generalized eigenvalues λ: Ae = λBe.
[P L]=eig(A,B) P is the generalized eigenvector matrix, L the diagonal matrix of eigenvalues, AP = BPL
Q=orth(A) the columns of Q are an orthonormal basis for R(A)
N=null(A) the columns of N are an orthonormal basis for N(A)
[Q R] = qr(A) A = QR, the Q-R decomposition. A need not be square, nor of full rank. See help qr.
[U T]=schur(A) A = UTUH, the Schur decomposition, U unitary, T upper triangular with tii = λi.
schur(A) returns T, in the Schur decomposition.
svd(A) the column of singular values of A.
[U S V] = svd(A) the singular value decomposition A = USV. See help svd for the short svd.
pinv(A) the pseudo inverse of A. See help pinv to see how to set a tolerance.
R=chol(A) the cholesky decomposition: A = RTR, if A is positive definite.
norm(A) the L2 norm of A = largest singular value. Other norms are available, use help.
cond(A) L2 condition number of A = largest singular value/smallest singular value
rcond(A) an estimate of 1/cond(A)

Other items of interest
 Matlab has a number of relational and boolean operators with which to compare matrices. To see
them, execute: help relop. They are discussed on another page in a limited way.

 Matlab can do FFTs, but you have to know how the discrete fourier and inverse fourier transforms
work to do problems.

 Many of the common special functions are well computed in Matlab.

 There are several numerical analysis procedures in Matlab, e.g. ode solvers, integrators and zero
finders. They are in m-files you can look at.

 6

Plotting in Matlab

2d Plotting
 Autoscaling is in effect unless the plotting window is specifically set. On each plot command, the
previous graph is erased and a new one is drawn, unless this is overridden. See below.

The basic commands: t, y, x, z are vectors, A is a matrix.
plot(y) plots yi versus i
plot(t,y) plots yi versus ti. t and y are of the same length.
plot(t,y,x,z) plots yi versus ti and zi versus xi. in the same window. Different line colors are

used. t and x can be of different lengths.
plot(A) plot each column of A versus i, Line colors rotate.
plot(t,A) plot each column of A versus ti

Adding labels and titles.
Note: int2tstr(n) converts the integer n to a string,
 num2str(x) converts the number x to a string
 [a b] concatenates the strings a and b.
xlabel('name') labels the x axis with the string name
ylabel('name') labels the y axis name
title('caption') adds the title caption above the graph
text(x,y,'name') starts the text string name at the location (x,y) on the plot
gtext(x,y,'name') waits for a mouse click to position the text insertion point

Using markers and specifying colors.
Colors: y, m (magenta), c (cyan), r, g, b, w, k(black).
Markers: . (point), o (circle), x, +, *, - (solid line), : (dotted line), -. (dash-dot line),
 -- (dashed line)
Note: for black and white printing, use one graph color and change line styles.
plot(x,y,'b:') uses a blue dotted line.
plot(x,y,'r',t,z,'g+) y versus x is plotted with a red line, z versus t is plotted with green + signs

Overplots and setting the plotting window.
hold on Allows overplots. Subsequent plots are placed on the same graph. Autoscaling

is in effect unless turned off.
hold off Turns off the overplotting.
axis([l r b t]) Sets the plotting window to [l, r]×[b t]
v=axis Returns v = [l r b t], the widow currently used.
axis(axis) Freezes the window at the current size (for overplots in a fixed window).
axis auto Turns on autoscaling
clf clear graph window and reset to autoscaling defaults
cla clear graph window of all plots and text, keeps the same window
figure start a new plotting window

There are other 2d plotting options available. They work the same as PLOT. They are
semilogx(…) log base 10 is used for the x scale
semilogy(…) log base 10 is used for the y scale
loglog(…) both x and y scales are logarithmic
polar(t,r) polar coordinate plot: t = vector of angles, r = vector of radii.

Matlab can put several plots in an array on a page. See help subplot.

 7

3D surface plots
 After the surface has been plotted, you can rotate the figure or zoom in or out. These options are under
the Tools menu in the menu bar. You can also add comments, etc. To set the viewing angle by a command,
see help view.
1. Wireframe plots
E.g. plot z = f(x,y) = x sin(x-y2) over [-1,1]×[0,3] using 50 x points and 60 y points.
 x = linspace(-1,1,50) sets xi
 y = linspace(0,3,60) sets yj
 [X,Y] = meshgrid(x,y); used to build Z to plot (don't forget the ;)
(*) Z = X.*sin(X-Y.^2); create z (don't forget the ;)
 mesh(x,y,Z) does the plot, with colors. mesh(X,Y,Z) also works.

Line (*) can be replace with a loop (note the i,j order).
 for i=1:length(x)
 for j=1:length(y)
 Z(j,i) = xi sin(xi - yj

2)
 end
 end

2. Patch plots
 The surface is made of patches, bounded by the wireframe lines.
 To do the same example in this style, do the following.
 x = linspace(-1,1,50) sets xi
 y = linspace(0,3,60) sets yj
 [X,Y] = meshgrid(x,y); used to build Z to plot (don't forget the ;)
 Z = X.*sin(X-Y.^2); create z (don't forget the ;)
 surf(x,y,Z) does the plot, with colors. surf(X,Y,Z) also works.

Axes can be labeled using xlabel(), ylabel(), and zlabel() as in the 2d plotting section.

Contour plots (Many options. See help contour)
contour(Z) contour plot of the matrix Z, zij = height above the z=0 plane. The row index runs

vertically, the column index horizontally.
contour(Z,'k') plots all the contours black on a white background
contour(Z,n) the same, but with n contour lines (overrides default)
contour(Z,v) the same, but with contour lines at vi, v = [v1 v2 … vn].

To do contour plots with specific x and y ranges, define x,y and Z as in the examples for surface plots.
contour(x,y,Z) plots with the default number of colored contours. contour(X,Y,Z) does the same.
contour(x,y,Z,n) plots with n contours
contour(x,y,Z,v) plots with the vector of specified contours.

Matlab can label contours too. See help clabel.

Note: The plots from Matlab can be copied to the clipboard and pasted into MS Word. There they can be
resized without loss of detail. It is better to start with a plot a bit too large and shrink it. To do this, after
the plot window appears, in the Edit menu, select copy figure. Then paste into Word. You can put several
plots on one page, and add typing or handwriting. You can also select lines from the command window
and copy and paste them into Word.

 8

M-files in Matlab

 M-files serve as programs, subroutines or function procedures in Matlab. There are two types: script
m-files and function m-files. Both are text files.
 A script m-file can consist of exactly the commands you enter at the keyboard to perform a task, or it
can be a program written in Matlab's simple language. For a long involved task, it is better to make an m-
file, so than one mistake does not necessitate redoing many calculations.
 A function m-file accepts inputs and returns outputs (see the more complete description below).
 All m-files must be saved in the form filename.m. One m-file can call another while it is being
executed.
 Scope of variables
 In a script m-file, all variables are global; in a function m-file they are local.
 Comments The % sign allows you to make comments in the m-file. All text after the % sign is
ignored.
 It is good practice to put the name of your m-file and description of what it does at the start of the file.
Begin each such line with %. It is a good idea to make liberal comments in the m-file. If you need to come
back and change the file later, the comments will help you remember what you were doing.

 Creating an m-file
 Start Matlab. Pull down the File menu, choose New, M-file. (the m-file editor should appear).
 Type in your commands and comments. Save your m-file: pull down the file menu, chose save.

 Modifying an m-file (after starting Matlab).
 If the Editor is open: just use the File>open>… sequence as usual.
 If the Editor is not open, use File>Open M-file in Matlab.
 Make your changes, and save the file with Save or Save As.

 Running an m-file. The m-file must be in a path recognized by Matlab, or in the current directory.
 You can set the current directory in the File menu by selecting Set Path…, and using Browse. To put
your floppy in Matlab's path, execute: path(path,'a').
 To run a script m-file from the command window, type the name of your m-file (without the .m) and
hit enter. E.g., type pnfit (and hit enter).
 Script m-files can be invoked by putting their name in a line of another m-file

 Function m-files.
 The first line of a simple function m-file which returns one output must look like
 function y = name(variablelist)
name is your name for the function, variablelist is a list of variables, separated by commas. This line
could be preceded by %comments.
e.g. y = quad(x)
 y = apiv(piv,m,n)
If you wish to have two outputs y1, y2 returned, use
 function [y1,y2] = name(variablelist).

 The rest of the function m-file is a sequence of Matlab commands or programming constructs, as usual.
 All variables inside the function m-file are local. That is, if they have the same name as a variable in
your workspace, the variable in the workspace will not be overwritten, and they are deleted after the
execution of the function m-file. A function m-file is executed, for example, by
 A = apiv(v,k,l)
The result of the function is stored in A. The variables v, k, l must have been defined before, or they can be
entered in the list of variables directly. They must be of the same type as piv, m, n in the m-file called.
You can execute the function m-file from the keyboard or from within another m-file.

 9

 Programming, flow control
 Matlab has a simple straightforward programming language. However it is very powerful because all
numerical variables are arrays of complex numbers.
 There are three common structures: loops, while and block if statements. Simple examples of these
can be found in Matlab help.

Loops: (can be nested) (help for)
 for i=1:n
 {executable statements}
 end

Block if: (elseif and else are optional) (help if)
 if test1
 {statements}
 elseif test2
 {statements}
 else
 {statements}
 end

test1 and test2 are conditional statements involving the relational operators. (help relop)
 == (equal), ~= (not equal), <, > ,<=, >=
and the boolean operators
 &, | (or), ~ (not), xor (exclusive or).
When test1 is true, its value is 1, and when false its value is 0.

While loop: (help while)
 while test
 {statements}
 end

test is a conditional statement involving the relational operators. Entering the loop, test is evaluated. If
false, the loop is skipped. If true, the statements are executed and then test is evaluated again, and the cycle
is repeated until test evaluates as false. Beware of infinite loops.

 Additional statements
x = input('promptstring') allows prompted inputs.
e.g.
 x = input('enter x= ') inputs a scalar
 x = input('x = [a b c] ') type [1 2 3] (and hit return) to assign x = [1 2 3].
pause pauses execution, waits for a keypress
break terminates the execution of a for or while loop; only the inner (or current) loop is exited.
return causes a return to the invoking function
disp(A) displays the array A. Use string arrays for words. Useful for making tables.
e.g.
 disp('x y') labels the columns; play with the spacing
 disp([x y]) shows the columns x and y beside each other

 Structured programming, a simple example.
 The main program can be in a script m-file. Other script m-files can be used as subroutines (the
variables are all global). They are invoked simply by placing the name of the called m-file in the main
program as is done at the keyboard. Function m-files are invoked by inserting a statement like
 A = apiv(piv,m,n)
where apiv(…) is the name of a function m-file, in the calling m-file. The variables in a function m-file are
local, and will not overwrite the variables in the calling program, nor are they available to the calling
program.

 10

Sample M-files

 The first example is a file which fits a polynomial of degree n to a function, or to data. To use it to fit
data, delete (or comment out) the line yd = sin(exp(xd)) and remove the % sign in front of the yd = […]
line.

%pnfit
%polynomial fits to a function or data
xd=[0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2]'; %data xi
yd=sin(exp(xd)); %yi values by a function
%yd=[1 1.05 1.15 1.35 1.6 1.8 2 1.9 1.55 .9 .24]'; % yi by data list
n=input('degree=')
one=ones(size(xd));
a=[one]; %build normal eq.
for i=1:n
 a=[a xd.^i];
end
c=(a'*a)\(a'*yd) %solve the normal equations
% plot the fit (using 51 points in [0 2]), and the data with o's
x=linspace(0,2,51)';
onex=ones(size(x));
ax=[onex];
for i=1:n
 ax=[ax x.^i];
end
px=ax*c; %vector of polynomial values
deg=int2str(n); %integer to string for title
plot(x,px,'k',xd,yd,'ko'); %k=black, o=small circles
title(['degree=' deg])
xlabel('x-axis')
ylabel('y-axis')

 The second example is of a function m-file which calls other function m-files.

function y=arref(R,m,a,b)
%Generates m x n matrix with integer entries a,a+1,...,b
%which has a specified r x n rref = R of rank r. R, a, b are inputs.
dim=size(R);
r=dim(1); % number of rows of R
n=dim(2); % number of columns of R
P=prand(r,a,b); %prand and arand are other function m-files
Q=arand(m-r,r,a,b);
y=[P;Q]*R;

	A Concise Introduction to
	MATLAB
	Other items of interest
	3D surface plots

